Documentation

Mathlib.AlgebraicGeometry.SpreadingOut

Spreading out morphisms #

Under certain conditions, a morphism on stalks Spec 𝒪_{X, x} ⟶ Spec 𝒪_{Y, y} can be spread out into a neighborhood of x.

Main result #

Given S-schemes X Y and points x : X y : Y over s : S. Suppose we have the following diagram of S-schemes

Spec 𝒪_{X, x} ⟶ X
    |
  Spec(φ)
    ↓
Spec 𝒪_{Y, y} ⟶ Y

We would like to spread Spec(φ) out to an S-morphism on an open subscheme U ⊆ X

Spec 𝒪_{X, x} ⟶ U ⊆ X
    |             |
  Spec(φ)         |
    ↓             ↓
Spec 𝒪_{Y, y} ⟶ Y

TODO #

Show that certain morphism properties can also be spread out.

class AlgebraicGeometry.Scheme.IsGermInjectiveAt (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) :

The germ map at x is injective if there exists some affine U ∋ x such that the map Γ(X, U) ⟶ X_x is injective

Instances
    theorem AlgebraicGeometry.Scheme.IsGermInjectiveAt.cond {X : AlgebraicGeometry.Scheme} {x : X.toPresheafedSpace} [self : X.IsGermInjectiveAt x] :
    ∃ (U : X.Opens) (hx : x U), AlgebraicGeometry.IsAffineOpen U Function.Injective (X.presheaf.germ U x hx)
    theorem AlgebraicGeometry.injective_germ_basicOpen {X : AlgebraicGeometry.Scheme} (U : X.Opens) (hU : AlgebraicGeometry.IsAffineOpen U) (x : X.toPresheafedSpace) (hx : x U) (f : (X.presheaf.obj (Opposite.op U))) (hf : x X.basicOpen f) (H : Function.Injective (X.presheaf.germ U x hx)) :
    Function.Injective (X.presheaf.germ (X.basicOpen f) x hf)
    theorem AlgebraicGeometry.Scheme.exists_germ_injective (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) [X.IsGermInjectiveAt x] :
    ∃ (U : X.Opens) (hx : x U), AlgebraicGeometry.IsAffineOpen U Function.Injective (X.presheaf.germ U x hx)
    theorem AlgebraicGeometry.Scheme.exists_le_and_germ_injective (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) [X.IsGermInjectiveAt x] (V : X.Opens) (hxV : x V) :
    ∃ (U : X.Opens) (hx : x U), AlgebraicGeometry.IsAffineOpen U U V Function.Injective (X.presheaf.germ U x hx)
    Equations
    • =
    theorem AlgebraicGeometry.isGermInjectiveAt_iff_of_isOpenImmersion {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} {f : X Y} {x : X.toPresheafedSpace} [AlgebraicGeometry.IsOpenImmersion f] :
    Y.IsGermInjectiveAt (f.base x) X.IsGermInjectiveAt x
    @[reducible, inline]

    The class of schemes such that for each x : X, Γ(X, U) ⟶ X_x is injective for some affine U containing x.

    This is typically satisfied when X is integral or locally noetherian.

    Equations
    • X.IsGermInjective = ∀ (x : X.toPresheafedSpace), X.IsGermInjectiveAt x
    Instances For
      theorem AlgebraicGeometry.Scheme.IsGermInjective.of_openCover {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) [∀ (i : 𝒰.J), (𝒰.obj i).IsGermInjective] :
      X.IsGermInjective
      theorem AlgebraicGeometry.Scheme.IsGermInjective.Spec {R : CommRingCat} (H : ∀ (I : Ideal R), I.IsPrimefI, ∀ (x y : R), y * x = 0yI∃ (n : ), f ^ n * x = 0) :
      (AlgebraicGeometry.Spec R).IsGermInjective
      @[instance 100]
      Equations
      • =
      theorem AlgebraicGeometry.spread_out_unique_of_isGermInjective {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} {x : X.toPresheafedSpace} [X.IsGermInjectiveAt x] (f : X Y) (g : X Y) (e : f.base x = g.base x) (H : AlgebraicGeometry.Scheme.Hom.stalkMap f x = CategoryTheory.CategoryStruct.comp (Y.presheaf.stalkSpecializes ) (AlgebraicGeometry.Scheme.Hom.stalkMap g x)) :

      Let x : X and f g : X ⟶ Y be two morphisms such that f x = g x. If f and g agree on the stalk of x, then they agree on an open neighborhood of x, provided X is "germ-injective" at x (e.g. when it's integral or locally noetherian).

      TODO: The condition on X is unnecessary when Y is locally of finite type.

      theorem AlgebraicGeometry.spread_out_unique_of_isGermInjective' {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} {x : X.toPresheafedSpace} [X.IsGermInjectiveAt x] (f : X Y) (g : X Y) (e : CategoryTheory.CategoryStruct.comp (X.fromSpecStalk x) f = CategoryTheory.CategoryStruct.comp (X.fromSpecStalk x) g) :

      A variant of spread_out_unique_of_isGermInjective whose condition is an equality of scheme morphisms instead of ring homomorphisms.

      theorem AlgebraicGeometry.exists_lift_of_germInjective_aux {X : AlgebraicGeometry.Scheme} {R : CommRingCat} {A : CommRingCat} {U : X.Opens} {x : X.toPresheafedSpace} (hxU : x U) (φ : A X.presheaf.stalk x) (φRA : R A) (φRX : R X.presheaf.obj (Opposite.op U)) (hφRA : RingHom.FiniteType φRA) (e : CategoryTheory.CategoryStruct.comp φRA φ = CategoryTheory.CategoryStruct.comp φRX (X.presheaf.germ U x hxU)) :
      ∃ (V : X.Opens) (hxV : x V), V U RingHom.range φ RingHom.range (X.presheaf.germ V x hxV)
      theorem AlgebraicGeometry.exists_lift_of_germInjective {X : AlgebraicGeometry.Scheme} {R : CommRingCat} {A : CommRingCat} {x : X.toPresheafedSpace} [X.IsGermInjectiveAt x] {U : X.Opens} (hxU : x U) (φ : A X.presheaf.stalk x) (φRA : R A) (φRX : R X.presheaf.obj (Opposite.op U)) (hφRA : RingHom.FiniteType φRA) (e : CategoryTheory.CategoryStruct.comp φRA φ = CategoryTheory.CategoryStruct.comp φRX (X.presheaf.germ U x hxU)) :
      ∃ (V : X.Opens) (hxV : x V) (φ' : A X.presheaf.obj (Opposite.op V)) (i : V U), AlgebraicGeometry.IsAffineOpen V φ = CategoryTheory.CategoryStruct.comp φ' (X.presheaf.germ V x hxV) CategoryTheory.CategoryStruct.comp φRX (X.presheaf.map i.hom.op) = CategoryTheory.CategoryStruct.comp φRA φ'

      Suppose X is a scheme, x : X such that the germ map at x is (locally) injective, and U is a neighborhood of x. Given a commutative diagram of CommRingCat

      R ⟶ Γ(X, U)
      ↓    ↓
      A ⟶ 𝒪_{X, x}
      

      such that R is of finite type over A, we may lift A ⟶ 𝒪_{X, x} to some A ⟶ Γ(X, V).

      theorem AlgebraicGeometry.spread_out_of_isGermInjective {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} {S : AlgebraicGeometry.Scheme} (sX : X S) (sY : Y S) [AlgebraicGeometry.LocallyOfFiniteType sY] {x : X.toPresheafedSpace} [X.IsGermInjectiveAt x] {y : Y.toPresheafedSpace} (e : sX.base x = sY.base y) (φ : Y.presheaf.stalk y X.presheaf.stalk x) (h : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.stalkMap sY y) φ = CategoryTheory.CategoryStruct.comp (S.presheaf.stalkSpecializes ) (AlgebraicGeometry.Scheme.Hom.stalkMap sX x)) :
      ∃ (U : X.Opens) (hxU : x U) (f : U Y), CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Spec.map φ) (Y.fromSpecStalk y) = CategoryTheory.CategoryStruct.comp (U.fromSpecStalkOfMem x hxU) f CategoryTheory.CategoryStruct.comp f sY = CategoryTheory.CategoryStruct.comp U sX

      Given S-schemes X Y and points x : X y : Y over s : S. Suppose we have the following diagram of S-schemes

      Spec 𝒪_{X, x} ⟶ X
          |
        Spec(φ)
          ↓
      Spec 𝒪_{Y, y} ⟶ Y
      

      Then the map Spec(φ) spreads out to an S-morphism on an open subscheme U ⊆ X,

      Spec 𝒪_{X, x} ⟶ U ⊆ X
          |             |
        Spec(φ)         |
          ↓             ↓
      Spec 𝒪_{Y, y} ⟶ Y
      

      provided that Y is locally of finite type over S and X is "germ-injective" at x (e.g. when it's integral or locally noetherian).

      TODO: The condition on X is unnecessary when Y is locally of finite presentation.

      theorem AlgebraicGeometry.spread_out_of_isGermInjective' {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} {S : AlgebraicGeometry.Scheme} (sX : X S) (sY : Y S) [AlgebraicGeometry.LocallyOfFiniteType sY] {x : X.toPresheafedSpace} [X.IsGermInjectiveAt x] (φ : AlgebraicGeometry.Spec (X.presheaf.stalk x) Y) (h : CategoryTheory.CategoryStruct.comp φ sY = CategoryTheory.CategoryStruct.comp (X.fromSpecStalk x) sX) :
      ∃ (U : X.Opens) (hxU : x U) (f : U Y), φ = CategoryTheory.CategoryStruct.comp (U.fromSpecStalkOfMem x hxU) f CategoryTheory.CategoryStruct.comp f sY = CategoryTheory.CategoryStruct.comp U sX

      Given S-schemes X Y, a point x : X, and a S-morphism φ : Spec 𝒪_{X, x} ⟶ Y, we may spread it out to an S-morphism f : U ⟶ Y provided that Y is locally of finite type over S and X is "germ-injective" at x (e.g. when it's integral or locally noetherian).

      TODO: The condition on X is unnecessary when Y is locally of finite presentation.