Documentation

Mathlib.CategoryTheory.Galois.Topology

Topology of fundamental group #

In this file we define a natural topology on the automorphism group of a functor F : C ⥤ FintypeCat: It is defined as the subspace topology induced by the natural embedding of Aut F into ∀ X, Aut (F.obj X) where Aut (F.obj X) carries the discrete topology.

References #

For a functor F : C ⥤ FintypeCat, the canonical embedding of Aut F into the product over Aut (F.obj X) for all objects X.

Equations
Instances For
    theorem CategoryTheory.PreGaloisCategory.autEmbedding_range {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) :
    Set.range (autEmbedding F) = ⋂ (f : Arrow C), {a : (X : C) → Aut (F.obj X) | CategoryStruct.comp (F.map f.hom) (a f.right).hom = CategoryStruct.comp (a f.left).hom (F.map f.hom)}

    The image of Aut F in ∀ X, Aut (F.obj X) are precisely the compatible families of automorphisms.

    The image of Aut F in ∀ X, Aut (F.obj X) is closed.

    @[deprecated CategoryTheory.PreGaloisCategory.autEmbedding_isClosedEmbedding (since := "2024-10-20")]

    Alias of CategoryTheory.PreGaloisCategory.autEmbedding_isClosedEmbedding.

    Equations
    theorem CategoryTheory.PreGaloisCategory.exists_set_ker_evaluation_subset_of_isOpen {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [GaloisCategory C] [FiberFunctor F] {H : Set (Aut F)} (h1 : 1 H) (h : IsOpen H) :
    ∃ (I : Set C) (x : Fintype I), (∀ XI, IsConnected X) ∀ (σ : Aut F), (∀ (X : I), σ.hom.app X = CategoryStruct.id (F.obj X))σ H

    If H is an open subset of Aut F such that 1 ∈ H, there exists a finite set I of connected objects of C such that every σ : Aut F that induces the identity on F.obj X for all X ∈ I is contained in H. In other words: The kernel of the evaluation map Aut F →* ∏ X : I ↦ Aut (F.obj X) is contained in H.

    The stabilizers of points in the fibers of Galois objects form a neighbourhood basis of the identity in Aut F.