Documentation

Mathlib.CategoryTheory.Localization.FiniteProducts

The localized category has finite products

In this file, it is shown that if L : C ⥤ D is a localization functor for W : MorphismProperty C and that W is stable under finite products, then D has finite products, and L preserves finite products.

theorem CategoryTheory.Localization.HasProductsOfShapeAux.inverts {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) {W : MorphismProperty C} [L.IsLocalization W] {J : Type} [Limits.HasProductsOfShape J C] (hW : W.IsStableUnderProductsOfShape J) :
(W.functorCategory (Discrete J)).IsInvertedBy (Limits.lim.comp L)
@[reducible, inline]
noncomputable abbrev CategoryTheory.Localization.HasProductsOfShapeAux.limitFunctor {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) {W : MorphismProperty C} [L.IsLocalization W] {J : Type} [Limits.HasProductsOfShape J C] (hW : W.IsStableUnderProductsOfShape J) [W.ContainsIdentities] [Finite J] :

The (candidate) limit functor for the localized category. It is induced by lim ⋙ L : (Discrete J ⥤ C) ⥤ D.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def CategoryTheory.Localization.HasProductsOfShapeAux.compLimitFunctorIso {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) {W : MorphismProperty C} [L.IsLocalization W] {J : Type} [Limits.HasProductsOfShape J C] (hW : W.IsStableUnderProductsOfShape J) [W.ContainsIdentities] [Finite J] :
    ((whiskeringRight (Discrete J) C D).obj L).comp (limitFunctor L hW) Limits.lim.comp L

    The functor limitFunctor L hW is induced by lim ⋙ L.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable instance CategoryTheory.Localization.HasProductsOfShapeAux.instCatCommSqFunctorDiscreteLimObjWhiskeringRightLimitFunctor {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) {W : MorphismProperty C} [L.IsLocalization W] {J : Type} [Limits.HasProductsOfShape J C] (hW : W.IsStableUnderProductsOfShape J) [W.ContainsIdentities] [Finite J] :
      Equations
      • One or more equations did not get rendered due to their size.
      noncomputable def CategoryTheory.Localization.HasProductsOfShapeAux.adj {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) {W : MorphismProperty C} [L.IsLocalization W] {J : Type} [Limits.HasProductsOfShape J C] (hW : W.IsStableUnderProductsOfShape J) [W.ContainsIdentities] [Finite J] :

      The adjunction between the constant functor D ⥤ (Discrete J ⥤ D) and limitFunctor L hW.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem CategoryTheory.Localization.HasProductsOfShapeAux.adj_counit_app {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) {W : MorphismProperty C} [L.IsLocalization W] {J : Type} [Limits.HasProductsOfShape J C] (hW : W.IsStableUnderProductsOfShape J) [W.ContainsIdentities] [Finite J] (F : Functor (Discrete J) C) :
        (adj L hW).counit.app (F.comp L) = CategoryStruct.comp ((Functor.const (Discrete J)).map ((compLimitFunctorIso L hW).hom.app F)) (CategoryStruct.comp ((Functor.compConstIso (Discrete J) L).hom.app (Limits.lim.obj F)) (whiskerRight (Limits.constLimAdj.counit.app F) L))
        noncomputable def CategoryTheory.Localization.HasProductsOfShapeAux.isLimitMapCone {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) {W : MorphismProperty C} [L.IsLocalization W] {J : Type} [Limits.HasProductsOfShape J C] (hW : W.IsStableUnderProductsOfShape J) [W.ContainsIdentities] [Finite J] (F : Functor (Discrete J) C) :

        Auxiliary definition for Localization.preservesProductsOfShape.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.Localization.hasProductsOfShape {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] [W.ContainsIdentities] (J : Type) [Finite J] [Limits.HasProductsOfShape J C] (hW : W.IsStableUnderProductsOfShape J) :
          theorem CategoryTheory.Localization.preservesProductsOfShape {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] [W.ContainsIdentities] (J : Type) [Finite J] [Limits.HasProductsOfShape J C] (hW : W.IsStableUnderProductsOfShape J) :

          When C has finite products indexed by J, W : MorphismProperty C contains identities and is stable by products indexed by J, then any localization functor for W preserves finite products indexed by J.

          theorem CategoryTheory.Localization.hasFiniteProducts {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] [W.ContainsIdentities] [Limits.HasFiniteProducts C] [W.IsStableUnderFiniteProducts] :
          theorem CategoryTheory.Localization.preservesFiniteProducts {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] [W.ContainsIdentities] [Limits.HasFiniteProducts C] [W.IsStableUnderFiniteProducts] :

          When C has finite products and W : MorphismProperty C contains identities and is stable by finite products, then any localization functor for W preserves finite products.

          instance CategoryTheory.Localization.instHasFiniteProductsLocalization {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) [W.ContainsIdentities] [Limits.HasFiniteProducts C] [W.IsStableUnderFiniteProducts] :
          instance CategoryTheory.Localization.instHasFiniteProductsLocalization' {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) [W.ContainsIdentities] [Limits.HasFiniteProducts C] [W.IsStableUnderFiniteProducts] [W.HasLocalization] :
          Limits.HasFiniteProducts W.Localization'
          instance CategoryTheory.Localization.instPreservesFiniteProductsLocalization'Q' {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) [W.ContainsIdentities] [Limits.HasFiniteProducts C] [W.IsStableUnderFiniteProducts] [W.HasLocalization] :