ZMod n
and quotient groups / rings #
This file relates ZMod n
to the quotient group
ℤ / AddSubgroup.zmultiples (n : ℤ)
and to the quotient ring
ℤ ⧸ Ideal.span {(n : ℤ)}
.
Main definitions #
ZMod.quotientZMultiplesNatEquivZMod
andZMod.quotientZMultiplesEquivZMod
:ZMod n
is the group quotient ofℤ
byn ℤ := AddSubgroup.zmultiples (n)
, (wheren : ℕ
andn : ℤ
respectively)ZMod.quotient_span_nat_equiv_zmod
andZMod.quotientSpanEquivZMod
:ZMod n
is the ring quotient ofℤ
byn ℤ : Ideal.span {n}
(wheren : ℕ
andn : ℤ
respectively)ZMod.lift n f
is the map fromZMod n
induced byf : ℤ →+ A
that mapsn
to0
.
Tags #
zmod, quotient group, quotient ring, ideal quotient
ℤ
modulo multiples of n : ℕ
is ZMod n
.
Equations
- Int.quotientZMultiplesNatEquivZMod n = (QuotientAddGroup.quotientAddEquivOfEq ⋯).symm.trans (QuotientAddGroup.quotientKerEquivOfRightInverse (Int.castAddHom (ZMod n)) ZMod.cast ⋯)
Instances For
ℤ
modulo multiples of a : ℤ
is ZMod a.natAbs
.
Equations
- a.quotientZMultiplesEquivZMod = (QuotientAddGroup.quotientAddEquivOfEq ⋯).symm.trans (Int.quotientZMultiplesNatEquivZMod a.natAbs)
Instances For
ℤ
modulo the ideal generated by n : ℕ
is ZMod n
.
Equations
- Int.quotientSpanNatEquivZMod n = (Ideal.quotEquivOfEq ⋯).symm.trans (RingHom.quotientKerEquivOfRightInverse ⋯)
Instances For
ℤ
modulo the ideal generated by a : ℤ
is ZMod a.natAbs
.
Equations
- a.quotientSpanEquivZMod = (Ideal.quotEquivOfEq ⋯).symm.trans (Int.quotientSpanNatEquivZMod a.natAbs)
Instances For
The Chinese remainder theorem, elementary version for ZMod
. See also
Mathlib.Data.ZMod.Basic
for versions involving only two numbers.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The quotient (ℤ ∙ a) ⧸ (stabilizer b)
is cyclic of order minimalPeriod (a +ᵥ ·) b
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The quotient (a ^ ℤ) ⧸ (stabilizer b)
is cyclic of order minimalPeriod ((•) a) b
.
Equations
- MulAction.zpowersQuotientStabilizerEquiv a b = AddEquiv.toMultiplicative (AddAction.zmultiplesQuotientStabilizerEquiv (Additive.ofMul a) b)
Instances For
The orbit (a ^ ℤ) • b
is a cycle of order minimalPeriod ((•) a) b
.
Equations
- MulAction.orbitZPowersEquiv a b = (MulAction.orbitEquivQuotientStabilizer (↥(Subgroup.zpowers a)) b).trans (MulAction.zpowersQuotientStabilizerEquiv a b).toEquiv
Instances For
The orbit (ℤ • a) +ᵥ b
is a cycle of order minimalPeriod (a +ᵥ ·) b
.
Equations
- AddAction.orbitZMultiplesEquiv a b = (AddAction.orbitEquivQuotientStabilizer (↥(AddSubgroup.zmultiples a)) b).trans (AddAction.zmultiplesQuotientStabilizerEquiv a b).toEquiv
Instances For
See also Fintype.card_zpowers
.
See also Fintype.card_zmultiples
.
Alias of the reverse direction of finite_zpowers
.
Partition G ⧸ H
into orbits of the action of g : G
.
Equations
- One or more equations did not get rendered due to their size.