Documentation

Mathlib.RingTheory.Kaehler

The module of kaehler differentials #

Main results #

Future project #

@[inline, reducible]
abbrev KaehlerDifferential.ideal (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] :

The kernel of the multiplication map S ⊗[R] S →ₐ[R] S.

Instances For
    def Derivation.tensorProductTo {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {M : Type u_1} [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] (D : Derivation R S M) :

    For a R-derivation S → M, this is the map S ⊗[R] S →ₗ[S] M sending s ⊗ₜ t ↦ s • D t.

    Instances For
      theorem Derivation.tensorProductTo_tmul {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {M : Type u_1} [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] (D : Derivation R S M) (s : S) (t : S) :
      ↑(Derivation.tensorProductTo D) (s ⊗ₜ[R] t) = s D t

      The kernel of S ⊗[R] S →ₐ[R] S is generated by 1 ⊗ s - s ⊗ 1 as a S-module.

      def KaehlerDifferential (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] :

      The module of Kähler differentials (Kahler differentials, Kaehler differentials). This is implemented as I / I ^ 2 with I the kernel of the multiplication map S ⊗[R] S →ₐ[R] S. To view elements as a linear combination of the form s • D s', use KaehlerDifferential.tensorProductTo_surjective and Derivation.tensorProductTo_tmul.

      We also provide the notation Ω[S⁄R] for KaehlerDifferential R S. Note that the slash is \textfractionsolidus.

      Instances For
        instance KaehlerDifferential.module (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] :

        The module of Kähler differentials (Kahler differentials, Kaehler differentials). This is implemented as I / I ^ 2 with I the kernel of the multiplication map S ⊗[R] S →ₐ[R] S. To view elements as a linear combination of the form s • D s', use KaehlerDifferential.tensorProductTo_surjective and Derivation.tensorProductTo_tmul.

        We also provide the notation Ω[S⁄R] for KaehlerDifferential R S. Note that the slash is \textfractionsolidus.

        Instances For
          instance KaehlerDifferential.module' (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] {R' : Type u_2} [CommRing R'] [Algebra R' S] [SMulCommClass R R' S] :
          instance KaehlerDifferential.isScalarTower_of_tower (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] {R₁ : Type u_2} {R₂ : Type u_3} [CommRing R₁] [CommRing R₂] [Algebra R₁ S] [Algebra R₂ S] [SMul R₁ R₂] [SMulCommClass R R₁ S] [SMulCommClass R R₂ S] [IsScalarTower R₁ R₂ S] :
          IsScalarTower R₁ R₂ (Ω[SR])

          The quotient map I → Ω[S⁄R] with I being the kernel of S ⊗[R] S → S.

          Instances For

            (Implementation) The underlying linear map of the derivation into Ω[S⁄R].

            Instances For
              theorem KaehlerDifferential.DLinearMap_apply (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (s : S) :
              def KaehlerDifferential.D (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] :

              The universal derivation into Ω[S⁄R].

              Instances For
                theorem KaehlerDifferential.D_apply (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (s : S) :
                ↑(KaehlerDifferential.D R S) s = ↑(Ideal.toCotangent (KaehlerDifferential.ideal R S)) { val := 1 ⊗ₜ[R] s - s ⊗ₜ[R] 1, property := (_ : 1 ⊗ₜ[R] s - s ⊗ₜ[R] 1 KaehlerDifferential.ideal R S) }
                def Derivation.liftKaehlerDifferential {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {M : Type u_1} [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] (D : Derivation R S M) :

                The linear map from Ω[S⁄R], associated with a derivation.

                Instances For
                  @[simp]
                  theorem Derivation.liftKaehlerDifferential_comp_D {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {M : Type u_1} [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] (D' : Derivation R S M) (x : S) :
                  theorem Derivation.liftKaehlerDifferential_unique {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {M : Type u_1} [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] (f : Ω[SR] →ₗ[S] M) (f' : Ω[SR] →ₗ[S] M) (hf : ↑(LinearMap.compDer f) (KaehlerDifferential.D R S) = ↑(LinearMap.compDer f') (KaehlerDifferential.D R S)) :
                  f = f'

                  The S-linear maps from Ω[S⁄R] to M are (S-linearly) equivalent to R-derivations from S to M.

                  Instances For

                    The quotient ring of S ⊗ S ⧸ J ^ 2 by Ω[S⁄R] is isomorphic to S.

                    Instances For

                      The quotient ring of S ⊗ S ⧸ J ^ 2 by Ω[S⁄R] is isomorphic to S as an S-algebra.

                      Instances For

                        A shortcut instance to prevent timing out. Hopefully to be removed in the future.

                        Instances For

                          A shortcut instance to prevent timing out. Hopefully to be removed in the future.

                          Instances For

                            A shortcut instance to prevent timing out. Hopefully to be removed in the future.

                            Instances For

                              A shortcut instance to prevent timing out. Hopefully to be removed in the future.

                              Instances For
                                def instS (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] :

                                A shortcut instance to prevent timing out. Hopefully to be removed in the future.

                                Instances For
                                  def instR (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] :

                                  A shortcut instance to prevent timing out. Hopefully to be removed in the future.

                                  Instances For
                                    def instSS (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] :

                                    A shortcut instance to prevent timing out. Hopefully to be removed in the future.

                                    Instances For

                                      Derivations into Ω[S⁄R] is equivalent to derivations into (KaehlerDifferential.ideal R S).cotangentIdeal.

                                      Instances For

                                        The endomorphisms of Ω[S⁄R] corresponds to sections of the surjection S ⊗[R] S ⧸ J ^ 2 →ₐ[R] S, with J being the kernel of the multiplication map S ⊗[R] S →ₐ[R] S.

                                        Instances For
                                          noncomputable def KaehlerDifferential.kerTotal (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] :

                                          The S-submodule of S →₀ S (the direct sum of copies of S indexed by S) generated by the relations:

                                          1. dx + dy = d(x + y)
                                          2. x dy + y dx = d(x * y)
                                          3. dr = 0 for r ∈ R where db is the unit in the copy of S with index b.

                                          This is the kernel of the surjection Finsupp.total S Ω[S⁄R] S (KaehlerDifferential.D R S). See KaehlerDifferential.kerTotal_eq and KaehlerDifferential.total_surjective.

                                          Instances For

                                            The (universal) derivation into (S →₀ S) ⧸ KaehlerDifferential.kerTotal R S.

                                            Instances For

                                              Ω[S⁄R] is isomorphic to S copies of S with kernel KaehlerDifferential.kerTotal.

                                              Instances For
                                                def Derivation.compAlgebraMap {R : Type u} [CommRing R] {M : Type u_1} [AddCommGroup M] [Module R M] (A : Type u_2) {B : Type u_3} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [IsScalarTower R A B] [Module A M] [Module B M] [IsScalarTower A B M] (d : Derivation R B M) :

                                                For a tower R → A → B and an R-derivation B → M, we may compose with A → B to obtain an R-derivation A → M.

                                                Instances For
                                                  def KaehlerDifferential.map (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [SMulCommClass S A B] :

                                                  The map Ω[A⁄R] →ₗ[A] Ω[B⁄R] given a square A --→ B ↑ ↑ | | R --→ S

                                                  Instances For
                                                    theorem KaehlerDifferential.map_D (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [SMulCommClass S A B] (x : A) :
                                                    ↑(KaehlerDifferential.map R S A B) (↑(KaehlerDifferential.D R A) x) = ↑(KaehlerDifferential.D S B) (↑(algebraMap A B) x)
                                                    noncomputable def KaehlerDifferential.mapBaseChange (R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [IsScalarTower R A B] :

                                                    The lift of the map Ω[A⁄R] →ₗ[A] Ω[B⁄R] to the base change along A → B. This is the first map in the exact sequence B ⊗[A] Ω[A⁄R] → Ω[B⁄R] → Ω[B⁄A] → 0.

                                                    Instances For
                                                      @[simp]
                                                      theorem KaehlerDifferential.mapBaseChange_tmul (R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [IsScalarTower R A B] (x : B) (y : Ω[AR]) :