Documentation

Mathlib.RingTheory.Localization.Ideal

Ideals in localizations of commutative rings #

Implementation notes #

See Mathlib/RingTheory/Localization/Basic.lean for a design overview.

Tags #

localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions

theorem IsLocalization.mk'_mem_iff {R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] {x : R} {y : M} {I : Ideal S} :
mk' S x y I (algebraMap R S) x I
theorem IsLocalization.mem_map_algebraMap_iff {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] {I : Ideal R} {z : S} :
z Ideal.map (algebraMap R S) I ∃ (x : I × M), z * (algebraMap R S) x.2 = (algebraMap R S) x.1
theorem IsLocalization.mk'_mem_map_algebraMap_iff {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I : Ideal R) (x : R) (s : M) :
mk' S x s Ideal.map (algebraMap R S) I sM, s * x I
theorem IsLocalization.algebraMap_mem_map_algebraMap_iff {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I : Ideal R) (x : R) :
(algebraMap R S) x Ideal.map (algebraMap R S) I mM, m * x I
theorem IsLocalization.map_comap {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (J : Ideal S) :
theorem IsLocalization.comap_map_of_isPrime_disjoint {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I : Ideal R) (hI : I.IsPrime) (hM : Disjoint M I) :

If S is the localization of R at a submonoid, the ordering of ideals of S is embedded in the ordering of ideals of R.

Equations
Instances For

    If R is a ring, then prime ideals in the localization at M correspond to prime ideals in the original ring R that are disjoint from M. This lemma gives the particular case for an ideal and its comap, see le_rel_iso_of_prime for the more general relation isomorphism

    theorem IsLocalization.isPrime_of_isPrime_disjoint {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I : Ideal R) (hp : I.IsPrime) (hd : Disjoint M I) :

    If R is a ring, then prime ideals in the localization at M correspond to prime ideals in the original ring R that are disjoint from M. This lemma gives the particular case for an ideal and its map, see le_rel_iso_of_prime for the more general relation isomorphism, and the reverse implication

    def IsLocalization.orderIsoOfPrime {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] :
    { p : Ideal S // p.IsPrime } ≃o { p : Ideal R // p.IsPrime Disjoint M p }

    If R is a ring, then prime ideals in the localization at M correspond to prime ideals in the original ring R that are disjoint from M

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      quotientMap applied to maximal ideals of a localization is surjective. The quotient by a maximal ideal is a field, so inverses to elements already exist, and the localization necessarily maps the equivalence class of the inverse in the localization

      theorem IsLocalization.bot_lt_comap_prime {R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] [IsDomain R] (hM : M nonZeroDivisors R) (p : Ideal S) [hpp : p.IsPrime] (hp0 : p ) :
      theorem NoZeroSMulDivisors_of_isLocalization (R : Type u_1) [CommRing R] (S : Type u_2) [CommRing S] [Algebra R S] (Rₚ : Type u_3) (Sₚ : Type u_4) [CommRing Rₚ] [CommRing Sₚ] [Algebra R Rₚ] [Algebra R Sₚ] [Algebra S Sₚ] [Algebra Rₚ Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] {M : Submonoid R} (hM : M nonZeroDivisors R) [IsLocalization M Rₚ] [IsLocalization (Algebra.algebraMapSubmonoid S M) Sₚ] [NoZeroSMulDivisors R S] [IsDomain S] :
      theorem IsLocalization.of_surjective {R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] {R' : Type u_3} {S' : Type u_4} [CommRing R'] [CommRing S'] [Algebra R' S'] (f : R →+* R') (hf : Function.Surjective f) (g : S →+* S') (hg : Function.Surjective g) (H : g.comp (algebraMap R S) = (algebraMap R' S').comp f) (H' : RingHom.ker g Ideal.map (algebraMap R S) (RingHom.ker f)) :