def
ConNF.InternalWellOrder
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(r : ConNF.TSet ↑α)
:
A set in our model that is a well-order. Internal well-orders are exactly external well-orders, so we externalise the definition for convenience.
Equations
- ConNF.InternalWellOrder hβ hγ hδ r = IsWellOrder (↑(ConNF.ExternalRel hβ hγ hδ r).field) (InvImage (ConNF.ExternalRel hβ hγ hδ r) Subtype.val)
Instances For
def
ConNF.InternallyWellOrdered
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(x : ConNF.TSet ↑γ)
:
Equations
- ConNF.InternallyWellOrdered hβ hγ hδ x = ({y : ConNF.TSet ↑δ | y ∈[hδ] x}.Subsingleton ∨ ∃ (r : ConNF.TSet ↑α), ConNF.InternalWellOrder hβ hγ hδ r ∧ x = ConNF.field hβ hγ hδ r)
Instances For
@[simp]
theorem
ConNF.externalRel_smul
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(r : ConNF.TSet ↑α)
(ρ : ConNF.AllPerm ↑α)
:
ConNF.ExternalRel hβ hγ hδ (ρ • r) = InvImage (ConNF.ExternalRel hβ hγ hδ r) fun (x : ConNF.TSet ↑δ) => (ρ ↘ hβ ↘ hγ ↘ hδ)⁻¹ • x
theorem
ConNF.apply_eq_of_isWellOrder
{X : Type u_1}
{r : Rel X X}
{f : X → X}
(hr : IsWellOrder X r)
(hf : Function.Bijective f)
(hf' : ∀ (x y : X), r x y ↔ r (f x) (f y))
(x : X)
:
f x = x
Well-orders are rigid.
theorem
ConNF.apply_eq_of_isWellOrder'
{X : Type u_1}
{r : Rel X X}
{f : X → X}
(hr : IsWellOrder (↑r.field) (InvImage r Subtype.val))
(hf : Function.Bijective f)
(hf' : ∀ (x y : X), r x y ↔ r (f x) (f y))
(x : X)
:
theorem
ConNF.exists_common_support_of_internallyWellOrdered'
[ConNF.Params]
{β γ δ ε : ConNF.Λ}
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(hε : ↑ε < ↑δ)
{x : ConNF.TSet ↑δ}
(h : ConNF.InternallyWellOrdered hγ hδ hε x)
:
theorem
ConNF.Support.Supports.ofSingleton
[ConNF.Params]
{α β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
{S : ConNF.Support ↑α}
{x : ConNF.TSet ↑β}
(h : S.Supports {x}[hβ])
:
(S.strong ↘ hβ).Supports x
theorem
ConNF.supports_of_supports_singletons
[ConNF.Params]
{α β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
{S : ConNF.Support ↑α}
{s : Set (ConNF.TSet ↑β)}
(h : ∀ x ∈ s, S.Supports {x}[hβ])
:
∃ (S : ConNF.Support ↑β), ∀ x ∈ s, S.Supports x
theorem
ConNF.exists_common_support_of_internallyWellOrdered
[ConNF.Params]
{β γ δ ε : ConNF.Λ}
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(hε : ↑ε < ↑δ)
{x : ConNF.TSet ↑δ}
(h : ConNF.InternallyWellOrdered hγ hδ hε x)
:
∃ (S : ConNF.Support ↑δ), ∀ (y : ConNF.TSet ↑ε), y ∈[hε] x → S.Supports {y}[hε]
theorem
ConNF.internallyWellOrdered_of_common_support_of_nontrivial
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
{x : ConNF.TSet ↑γ}
(hx : {y : ConNF.TSet ↑δ | y ∈[hδ] x}.Nontrivial)
(S : ConNF.Support ↑δ)
(hS : ∀ (y : ConNF.TSet ↑δ), y ∈[hδ] x → S.Supports y)
:
ConNF.InternallyWellOrdered hβ hγ hδ x
theorem
ConNF.internallyWellOrdered_of_common_support
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
{x : ConNF.TSet ↑γ}
(S : ConNF.Support ↑δ)
(hS : ∀ (y : ConNF.TSet ↑δ), y ∈[hδ] x → S.Supports y)
:
ConNF.InternallyWellOrdered hβ hγ hδ x
theorem
ConNF.powerset_internallyWellOrdered
[ConNF.Params]
{α β γ δ ε : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(hε : ↑ε < ↑δ)
{x : ConNF.TSet ↑δ}
(h : ConNF.InternallyWellOrdered hγ hδ hε x)
:
ConNF.InternallyWellOrdered hβ hγ hδ (ConNF.powerset hδ hε x)