Documentation

ConNF.External.WellOrder

New file #

In this file...

Main declarations #

def ConNF.InternalWellOrder [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (r : ConNF.TSet α) :

A set in our model that is a well-order. Internal well-orders are exactly external well-orders, so we externalise the definition for convenience.

Equations
Instances For
    def ConNF.InternallyWellOrdered [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (x : ConNF.TSet γ) :
    Equations
    Instances For
      @[simp]
      theorem ConNF.externalRel_smul [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (r : ConNF.TSet α) (ρ : ConNF.AllPerm α) :
      ConNF.ExternalRel (ρ r) = InvImage (ConNF.ExternalRel r) fun (x : ConNF.TSet δ) => (ρ )⁻¹ x
      theorem ConNF.apply_eq_of_isWellOrder {X : Type u_1} {r : Rel X X} {f : XX} (hr : IsWellOrder X r) (hf : Function.Bijective f) (hf' : ∀ (x y : X), r x y r (f x) (f y)) (x : X) :
      f x = x

      Well-orders are rigid.

      theorem ConNF.apply_eq_of_isWellOrder' {X : Type u_1} {r : Rel X X} {f : XX} (hr : IsWellOrder (↑r.field) (InvImage r Subtype.val)) (hf : Function.Bijective f) (hf' : ∀ (x y : X), r x y r (f x) (f y)) (x : X) :
      x r.fieldf x = x
      theorem ConNF.exists_common_support_of_internallyWellOrdered' [ConNF.Params] {β γ δ ε : ConNF.Λ} (hγ : γ < β) (hδ : δ < γ) (hε : ε < δ) {x : ConNF.TSet δ} (h : ConNF.InternallyWellOrdered x) :
      ∃ (S : ConNF.Support β), ∀ (y : ConNF.TSet ε), y ∈[] xS.Supports {{{y}[]}[]}[]
      theorem ConNF.Support.Supports.ofSingleton [ConNF.Params] {α β γ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) {S : ConNF.Support α} {x : ConNF.TSet β} (h : S.Supports {x}[]) :
      (S.strong ).Supports x
      theorem ConNF.supports_of_supports_singletons [ConNF.Params] {α β γ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) {S : ConNF.Support α} {s : Set (ConNF.TSet β)} (h : xs, S.Supports {x}[]) :
      ∃ (S : ConNF.Support β), xs, S.Supports x
      theorem ConNF.exists_common_support_of_internallyWellOrdered [ConNF.Params] {β γ δ ε : ConNF.Λ} (hγ : γ < β) (hδ : δ < γ) (hε : ε < δ) {x : ConNF.TSet δ} (h : ConNF.InternallyWellOrdered x) :
      ∃ (S : ConNF.Support δ), ∀ (y : ConNF.TSet ε), y ∈[] xS.Supports {y}[]
      theorem ConNF.internallyWellOrdered_of_common_support_of_nontrivial [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) {x : ConNF.TSet γ} (hx : {y : ConNF.TSet δ | y ∈[] x}.Nontrivial) (S : ConNF.Support δ) (hS : ∀ (y : ConNF.TSet δ), y ∈[] xS.Supports y) :
      theorem ConNF.internallyWellOrdered_of_common_support [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) {x : ConNF.TSet γ} (S : ConNF.Support δ) (hS : ∀ (y : ConNF.TSet δ), y ∈[] xS.Supports y) :
      theorem ConNF.powerset_internallyWellOrdered [ConNF.Params] {α β γ δ ε : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (hε : ε < δ) {x : ConNF.TSet δ} (h : ConNF.InternallyWellOrdered x) :