Documentation

Mathlib.AlgebraicGeometry.Morphisms.Flat

Flat morphisms #

A morphism of schemes f : X ⟶ Y is flat if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, the induced map Γ(Y, U) ⟶ Γ(X, V) is flat. This is equivalent to asking that all stalk maps are flat (see AlgebraicGeometry.Flat.iff_flat_stalkMap).

We show that this property is local, and are stable under compositions and base change.

class AlgebraicGeometry.Flat {X Y : Scheme} (f : X Y) :

A morphism of schemes f : X ⟶ Y is flat if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, the induced map Γ(Y, U) ⟶ Γ(X, V) is flat. This is equivalent to asking that all stalk maps are flat (see AlgebraicGeometry.Flat.iff_flat_stalkMap).

Instances
    theorem AlgebraicGeometry.flat_iff {X Y : Scheme} (f : X Y) :
    Flat f ∀ {U : Y.Opens}, IsAffineOpen U∀ {V : X.Opens}, IsAffineOpen V∀ (e : V (TopologicalSpace.Opens.map f.base).obj U), (CommRingCat.Hom.hom (Scheme.Hom.appLE f U V e)).Flat
    theorem AlgebraicGeometry.Scheme.Hom.flat_appLE {X Y : Scheme} (f : X Y) [self : Flat f] {U : Y.Opens} :
    IsAffineOpen U∀ {V : X.Opens}, IsAffineOpen V∀ (e : V (TopologicalSpace.Opens.map f.base).obj U), (CommRingCat.Hom.hom (appLE f U V e)).Flat

    Alias of AlgebraicGeometry.Flat.flat_appLE.

    @[deprecated AlgebraicGeometry.Scheme.Hom.flat_appLE (since := "2026-01-20")]
    theorem AlgebraicGeometry.Flat.flat_of_affine_subset {X Y : Scheme} (f : X Y) [self : Flat f] {U : Y.Opens} :

    Alias of AlgebraicGeometry.Flat.flat_appLE.


    Alias of AlgebraicGeometry.Flat.flat_appLE.

    @[instance 900]
    instance AlgebraicGeometry.Flat.comp {X Y Z : Scheme} (f : X Y) (g : Y Z) [hf : Flat f] [hg : Flat g] :
    instance AlgebraicGeometry.Flat.instMorphismRestrict {X Y : Scheme} (f : X Y) (V : Y.Opens) [Flat f] :
    Flat (f ∣_ V)
    instance AlgebraicGeometry.Flat.instResLE {X Y : Scheme} (f : X Y) (U : X.Opens) (V : Y.Opens) (e : U (TopologicalSpace.Opens.map f.base).obj V) [Flat f] :
    theorem AlgebraicGeometry.Flat.of_stalkMap {X Y : Scheme} (f : X Y) (H : ∀ (x : X), (CommRingCat.Hom.hom (Scheme.Hom.stalkMap f x)).Flat) :
    instance AlgebraicGeometry.Flat.instDescScheme {X : Scheme} {ι : Type v} [Small.{u, v} ι] {Y : ιScheme} {f : (i : ι) → Y i X} [∀ (i : ι), Flat (f i)] :

    A surjective, quasi-compact, flat morphism is a quotient map.

    A flat surjective morphism of schemes is an epimorphism in the category of schemes.