Documentation

Mathlib.AlgebraicGeometry.Morphisms.Flat

Flat morphisms #

A morphism of schemes f : X ⟶ Y is flat if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, the induced map Γ(Y, U) ⟶ Γ(X, V) is flat. This is equivalent to asking that all stalk maps are flat (see AlgebraicGeometry.Flat.iff_flat_stalkMap).

We show that this property is local, and are stable under compositions and base change.

class AlgebraicGeometry.Flat {X Y : Scheme} (f : X Y) :

A morphism of schemes f : X ⟶ Y is flat if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, the induced map Γ(Y, U) ⟶ Γ(X, V) is flat. This is equivalent to asking that all stalk maps are flat (see AlgebraicGeometry.Flat.iff_flat_stalkMap).

Instances
    theorem AlgebraicGeometry.flat_iff {X Y : Scheme} (f : X Y) :
    Flat f ∀ (U : Y.affineOpens) (V : X.affineOpens) (e : V (TopologicalSpace.Opens.map f.base).obj U), (Scheme.Hom.appLE f (↑U) (↑V) e).hom.Flat
    @[instance 900]
    instance AlgebraicGeometry.Flat.comp {X Y Z : Scheme} (f : X Y) (g : Y Z) [hf : Flat f] [hg : Flat g] :
    theorem AlgebraicGeometry.Flat.of_stalkMap {X Y : Scheme} (f : X Y) (H : ∀ (x : X.toPresheafedSpace), (Scheme.Hom.stalkMap f x).hom.Flat) :
    theorem AlgebraicGeometry.Flat.stalkMap {X Y : Scheme} (f : X Y) [Flat f] (x : X.toPresheafedSpace) :
    (Scheme.Hom.stalkMap f x).hom.Flat
    theorem AlgebraicGeometry.Flat.iff_flat_stalkMap {X Y : Scheme} (f : X Y) :
    Flat f ∀ (x : X.toPresheafedSpace), (Scheme.Hom.stalkMap f x).hom.Flat