Flat morphisms #
A morphism of schemes f : X ⟶ Y
is flat if for each affine U ⊆ Y
and
V ⊆ f ⁻¹' U
, the induced map Γ(Y, U) ⟶ Γ(X, V)
is flat. This is equivalent to
asking that all stalk maps are flat (see AlgebraicGeometry.Flat.iff_flat_stalkMap
).
We show that this property is local, and are stable under compositions and base change.
A morphism of schemes f : X ⟶ Y
is flat if for each affine U ⊆ Y
and
V ⊆ f ⁻¹' U
, the induced map Γ(Y, U) ⟶ Γ(X, V)
is flat. This is equivalent to
asking that all stalk maps are flat (see AlgebraicGeometry.Flat.iff_flat_stalkMap
).
- flat_of_affine_subset (U : ↑Y.affineOpens) (V : ↑X.affineOpens) (e : ↑V ≤ (TopologicalSpace.Opens.map f.base).obj ↑U) : (Scheme.Hom.appLE f (↑U) (↑V) e).hom.Flat
Instances
theorem
AlgebraicGeometry.flat_iff
{X Y : Scheme}
(f : X ⟶ Y)
:
Flat f ↔ ∀ (U : ↑Y.affineOpens) (V : ↑X.affineOpens) (e : ↑V ≤ (TopologicalSpace.Opens.map f.base).obj ↑U),
(Scheme.Hom.appLE f (↑U) (↑V) e).hom.Flat
instance
AlgebraicGeometry.Flat.instHasRingHomPropertyFlat :
HasRingHomProperty @Flat fun {R S : Type u_1} [CommRing R] [CommRing S] => RingHom.Flat
@[instance 900]
instance
AlgebraicGeometry.Flat.instOfIsOpenImmersion
{X Y : Scheme}
(f : X ⟶ Y)
[IsOpenImmersion f]
:
Flat f
theorem
AlgebraicGeometry.Flat.of_stalkMap
{X Y : Scheme}
(f : X ⟶ Y)
(H : ∀ (x : ↑↑X.toPresheafedSpace), (Scheme.Hom.stalkMap f x).hom.Flat)
:
Flat f
theorem
AlgebraicGeometry.Flat.stalkMap
{X Y : Scheme}
(f : X ⟶ Y)
[Flat f]
(x : ↑↑X.toPresheafedSpace)
:
(Scheme.Hom.stalkMap f x).hom.Flat
theorem
AlgebraicGeometry.Flat.iff_flat_stalkMap
{X Y : Scheme}
(f : X ⟶ Y)
:
Flat f ↔ ∀ (x : ↑↑X.toPresheafedSpace), (Scheme.Hom.stalkMap f x).hom.Flat