Documentation

Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic

The Zariski topology on the prime spectrum of a commutative (semi)ring #

Conventions #

We denote subsets of (semi)rings with s, s', etc... whereas we denote subsets of prime spectra with t, t', etc...

Inspiration/contributors #

The contents of this file draw inspiration from https://github.com/ramonfmir/lean-scheme which has contributions from Ramon Fernandez Mir, Kevin Buzzard, Kenny Lau, and Chris Hughes (on an earlier repository).

The Zariski topology on the prime spectrum of a commutative (semi)ring is defined via the closed sets of the topology: they are exactly those sets that are the zero locus of a subset of the ring.

Equations

The antitone order embedding of closed subsets of Spec R into ideals of R.

Equations
Instances For
    theorem PrimeSpectrum.vanishingIdeal_isIrreducible {R : Type u} [CommSemiring R] :
    PrimeSpectrum.vanishingIdeal '' {s : Set (PrimeSpectrum R) | IsIrreducible s} = {P : Ideal R | P.IsPrime}
    theorem PrimeSpectrum.vanishingIdeal_isClosed_isIrreducible {R : Type u} [CommSemiring R] :
    PrimeSpectrum.vanishingIdeal '' {s : Set (PrimeSpectrum R) | IsClosed s IsIrreducible s} = {P : Ideal R | P.IsPrime}

    The prime spectrum of a commutative (semi)ring is a compact topological space.

    The prime spectrum of a semiring has discrete Zariski topology iff it is finite and all primes are maximal.

    The prime spectrum of a semiring has discrete Zariski topology iff there are only finitely many maximal ideals and their intersection is contained in the nilradical.

    The continuous function between prime spectra of commutative (semi)rings induced by a ring homomorphism.

    Equations
    Instances For
      @[simp]
      theorem PrimeSpectrum.comap_asIdeal {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R →+* S) (y : PrimeSpectrum S) :
      ((PrimeSpectrum.comap f) y).asIdeal = Ideal.comap f y.asIdeal
      @[simp]
      theorem PrimeSpectrum.comap_comp {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] {S' : Type u_1} [CommSemiring S'] (f : R →+* S) (g : S →+* S') :
      theorem PrimeSpectrum.comap_comp_apply {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] {S' : Type u_1} [CommSemiring S'] (f : R →+* S) (g : S →+* S') (x : PrimeSpectrum S') :
      @[deprecated PrimeSpectrum.localization_comap_isInducing]

      Alias of PrimeSpectrum.localization_comap_isInducing.

      @[deprecated PrimeSpectrum.localization_comap_isEmbedding]

      Alias of PrimeSpectrum.localization_comap_isEmbedding.

      @[deprecated PrimeSpectrum.comap_isInducing_of_surjective]

      Alias of PrimeSpectrum.comap_isInducing_of_surjective.

      The comap of a surjective ring homomorphism is a closed embedding between the prime spectra.

      @[deprecated PrimeSpectrum.isClosedEmbedding_comap_of_surjective]

      Alias of PrimeSpectrum.isClosedEmbedding_comap_of_surjective.

      The prime spectrum of R × S is homeomorphic to the disjoint union of PrimeSpectrum R and PrimeSpectrum S.

      Equations
      Instances For

        basicOpen r is the open subset containing all prime ideals not containing r.

        Equations
        Instances For
          @[simp]
          theorem PrimeSpectrum.mem_basicOpen {R : Type u} [CommSemiring R] (f : R) (x : PrimeSpectrum R) :
          x PrimeSpectrum.basicOpen f fx.asIdeal
          @[simp]
          @[deprecated PrimeSpectrum.localization_away_isOpenEmbedding]

          Alias of PrimeSpectrum.localization_away_isOpenEmbedding.

          theorem PrimeSpectrum.iSup_basicOpen_eq_top_iff {R : Type u} [CommSemiring R] {ι : Type u_1} {f : ιR} :

          If the prime spectrum of a commutative semiring R has discrete Zariski topology, then R is canonically isomorphic to the product of its localizations at the (finitely many) maximal ideals.

          Stacks Tag 00JA (See also PrimeSpectrum.discreteTopology_iff_finite_isMaximal_and_sInf_le_nilradical.)

          Equations
          Instances For

            The specialization order #

            We endow PrimeSpectrum R with a partial order, where x ≤ y if and only if y ∈ closure {x}.

            nhds as an order embedding.

            Equations
            Instances For
              @[simp]
              theorem PrimeSpectrum.nhdsOrderEmbedding_apply {R : Type u} [CommSemiring R] (x : PrimeSpectrum R) :
              PrimeSpectrum.nhdsOrderEmbedding x = nhds x

              If x specializes to y, then there is a natural map from the localization of y to the localization of x.

              Equations
              Instances For
                theorem PrimeSpectrum.denseRange_comap_iff_minimalPrimes {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) :
                DenseRange (PrimeSpectrum.comap f) ∀ (I : Ideal R) (h : I minimalPrimes R), { asIdeal := I, isPrime := } Set.range (PrimeSpectrum.comap f)

                Stacks Tag 00FL

                Zero loci of prime ideals are closed irreducible sets in the Zariski topology and any closed irreducible set is a zero locus of some prime ideal.

                Equations
                Instances For
                  @[deprecated PrimeSpectrum.exists_idempotent_basicOpen_eq_of_isClopen]

                  Alias of PrimeSpectrum.exists_idempotent_basicOpen_eq_of_isClopen.

                  theorem PrimeSpectrum.isClosedMap_comap_of_isIntegral {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) (hf : f.IsIntegral) :
                  theorem PrimeSpectrum.isClosed_comap_singleton_of_isIntegral {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) (hf : f.IsIntegral) (x : PrimeSpectrum S) (hx : IsClosed {x}) :

                  Localizations at minimal primes have single-point prime spectra.

                  Equations
                  Instances For

                    Stacks: Lemma 00ES (3) Zero loci of minimal prime ideals of R are irreducible components in Spec R and any irreducible component is a zero locus of some minimal prime ideal.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      The closed point in the prime spectrum of a local ring.

                      Equations
                      Instances For
                        @[deprecated IsLocalRing.closedPoint]

                        Alias of IsLocalRing.closedPoint.


                        The closed point in the prime spectrum of a local ring.

                        Equations
                        Instances For
                          @[deprecated IsLocalRing.specializes_closedPoint]

                          Alias of IsLocalRing.specializes_closedPoint.

                          Clopen subsets in the prime spectrum of a commutative ring are in 1-1 correspondence with idempotent elements in the ring.

                          Stacks Tag 00EE

                          Equations
                          Instances For
                            theorem PrimeSpectrum.basicOpen_isIdempotentElemEquivClopens_symm {R : Type u} [CommRing R] (s : TopologicalSpace.Clopens (PrimeSpectrum R)) :
                            PrimeSpectrum.basicOpen (PrimeSpectrum.isIdempotentElemEquivClopens.symm s) = s.toOpens
                            theorem PrimeSpectrum.coe_isIdempotentElemEquivClopens_apply {R : Type u} [CommRing R] (e : {e : R | IsIdempotentElem e}) :
                            (PrimeSpectrum.isIdempotentElemEquivClopens e) = (PrimeSpectrum.basicOpen e)
                            theorem PrimeSpectrum.isIdempotentElemEquivClopens_apply_toOpens {R : Type u} [CommRing R] (e : {e : R | IsIdempotentElem e}) :
                            (PrimeSpectrum.isIdempotentElemEquivClopens e).toOpens = PrimeSpectrum.basicOpen e
                            theorem PrimeSpectrum.isIdempotentElemEquivClopens_mul {R : Type u} [CommRing R] (e₁ e₂ : {e : R | IsIdempotentElem e}) :
                            PrimeSpectrum.isIdempotentElemEquivClopens e₁ * e₂, = PrimeSpectrum.isIdempotentElemEquivClopens e₁ PrimeSpectrum.isIdempotentElemEquivClopens e₂
                            theorem PrimeSpectrum.isIdempotentElemEquivClopens_one_sub {R : Type u} [CommRing R] (e : {e : R | IsIdempotentElem e}) :
                            PrimeSpectrum.isIdempotentElemEquivClopens 1 - e, = (PrimeSpectrum.isIdempotentElemEquivClopens e)
                            theorem PrimeSpectrum.isIdempotentElemEquivClopens_symm_inf {R : Type u} [CommRing R] (s₁ s₂ : TopologicalSpace.Clopens (PrimeSpectrum R)) :
                            PrimeSpectrum.isIdempotentElemEquivClopens.symm (s₁ s₂) = (PrimeSpectrum.isIdempotentElemEquivClopens.symm s₁) * (PrimeSpectrum.isIdempotentElemEquivClopens.symm s₂),
                            theorem PrimeSpectrum.isIdempotentElemEquivClopens_symm_compl {R : Type u} [CommRing R] (s : TopologicalSpace.Clopens (PrimeSpectrum R)) :
                            PrimeSpectrum.isIdempotentElemEquivClopens.symm s = 1 - (PrimeSpectrum.isIdempotentElemEquivClopens.symm s),
                            theorem PrimeSpectrum.isIdempotentElemEquivClopens_symm_top {R : Type u} [CommRing R] :
                            PrimeSpectrum.isIdempotentElemEquivClopens.symm = 1,
                            theorem PrimeSpectrum.isIdempotentElemEquivClopens_symm_bot {R : Type u} [CommRing R] :
                            PrimeSpectrum.isIdempotentElemEquivClopens.symm = 0,
                            theorem PrimeSpectrum.isIdempotentElemEquivClopens_symm_sup {R : Type u} [CommRing R] (s₁ s₂ : TopologicalSpace.Clopens (PrimeSpectrum R)) :
                            PrimeSpectrum.isIdempotentElemEquivClopens.symm (s₁ s₂) = (PrimeSpectrum.isIdempotentElemEquivClopens.symm s₁) + (PrimeSpectrum.isIdempotentElemEquivClopens.symm s₂) - (PrimeSpectrum.isIdempotentElemEquivClopens.symm s₁) * (PrimeSpectrum.isIdempotentElemEquivClopens.symm s₂),