Documentation

Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic

Prime spectrum of a commutative ring #

The prime spectrum of a commutative ring is the type of all prime ideals. It is naturally endowed with a topology: the Zariski topology.

(It is also naturally endowed with a sheaf of rings, which is constructed in AlgebraicGeometry.StructureSheaf.)

Main definitions #

Conventions #

We denote subsets of rings with s, s', etc... whereas we denote subsets of prime spectra with t, t', etc...

Inspiration/contributors #

The contents of this file draw inspiration from https://github.com/ramonfmir/lean-scheme which has contributions from Ramon Fernandez Mir, Kevin Buzzard, Kenny Lau, and Chris Hughes (on an earlier repository).

theorem PrimeSpectrum.ext_iff {R : Type u} :
∀ {inst : CommRing R} (x y : PrimeSpectrum R), x = y x.asIdeal = y.asIdeal
theorem PrimeSpectrum.ext {R : Type u} :
∀ {inst : CommRing R} (x y : PrimeSpectrum R), x.asIdeal = y.asIdealx = y
structure PrimeSpectrum (R : Type u) [CommRing R] :

The prime spectrum of a commutative ring R is the type of all prime ideals of R.

It is naturally endowed with a topology (the Zariski topology), and a sheaf of commutative rings (see AlgebraicGeometry.StructureSheaf). It is a fundamental building block in algebraic geometry.

Instances For

    The prime spectrum of the zero ring is empty.

    The map from the direct sum of prime spectra to the prime spectrum of a direct product.

    Instances For

      The prime spectrum of R × S is in bijection with the disjoint unions of the prime spectrum of R and the prime spectrum of S.

      Instances For
        @[simp]
        @[simp]

        The zero locus of a set s of elements of a commutative ring R is the set of all prime ideals of the ring that contain the set s.

        An element f of R can be thought of as a dependent function on the prime spectrum of R. At a point x (a prime ideal) the function (i.e., element) f takes values in the quotient ring R modulo the prime ideal x. In this manner, zeroLocus s is exactly the subset of PrimeSpectrum R where all "functions" in s vanish simultaneously.

        Instances For
          @[simp]
          theorem PrimeSpectrum.mem_zeroLocus {R : Type u} [CommRing R] (x : PrimeSpectrum R) (s : Set R) :
          x PrimeSpectrum.zeroLocus s s x.asIdeal

          The vanishing ideal of a set t of points of the prime spectrum of a commutative ring R is the intersection of all the prime ideals in the set t.

          An element f of R can be thought of as a dependent function on the prime spectrum of R. At a point x (a prime ideal) the function (i.e., element) f takes values in the quotient ring R modulo the prime ideal x. In this manner, vanishingIdeal t is exactly the ideal of R consisting of all "functions" that vanish on all of t.

          Instances For
            theorem PrimeSpectrum.coe_vanishingIdeal {R : Type u} [CommRing R] (t : Set (PrimeSpectrum R)) :
            ↑(PrimeSpectrum.vanishingIdeal t) = {f | ∀ (x : PrimeSpectrum R), x tf x.asIdeal}
            theorem PrimeSpectrum.mem_vanishingIdeal {R : Type u} [CommRing R] (t : Set (PrimeSpectrum R)) (f : R) :
            f PrimeSpectrum.vanishingIdeal t ∀ (x : PrimeSpectrum R), x tf x.asIdeal

            zeroLocus and vanishingIdeal form a galois connection.

            zeroLocus and vanishingIdeal form a galois connection.

            theorem PrimeSpectrum.zeroLocus_iSup {R : Type u} [CommRing R] {ι : Sort u_1} (I : ιIdeal R) :
            PrimeSpectrum.zeroLocus ↑(⨆ (i : ι), I i) = ⋂ (i : ι), PrimeSpectrum.zeroLocus ↑(I i)
            theorem PrimeSpectrum.zeroLocus_iUnion {R : Type u} [CommRing R] {ι : Sort u_1} (s : ιSet R) :
            PrimeSpectrum.zeroLocus (⋃ (i : ι), s i) = ⋂ (i : ι), PrimeSpectrum.zeroLocus (s i)
            theorem PrimeSpectrum.zeroLocus_bUnion {R : Type u} [CommRing R] (s : Set (Set R)) :
            PrimeSpectrum.zeroLocus (⋃ (s' : Set R) (_ : s' s), s') = ⋂ (s' : Set R) (_ : s' s), PrimeSpectrum.zeroLocus s'
            theorem PrimeSpectrum.vanishingIdeal_iUnion {R : Type u} [CommRing R] {ι : Sort u_1} (t : ιSet (PrimeSpectrum R)) :
            PrimeSpectrum.vanishingIdeal (⋃ (i : ι), t i) = ⨅ (i : ι), PrimeSpectrum.vanishingIdeal (t i)
            @[simp]
            theorem PrimeSpectrum.zeroLocus_pow {R : Type u} [CommRing R] (I : Ideal R) {n : } (hn : 0 < n) :
            @[simp]

            The Zariski topology on the prime spectrum of a commutative ring is defined via the closed sets of the topology: they are exactly those sets that are the zero locus of a subset of the ring.

            The antitone order embedding of closed subsets of Spec R into ideals of R.

            Instances For
              theorem PrimeSpectrum.preimage_comap_zeroLocus_aux {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) (s : Set R) :
              (fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹' PrimeSpectrum.zeroLocus s = PrimeSpectrum.zeroLocus (f '' s)

              The function between prime spectra of commutative rings induced by a ring homomorphism. This function is continuous.

              Instances For
                @[simp]
                theorem PrimeSpectrum.comap_asIdeal {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) (y : PrimeSpectrum S) :
                (↑(PrimeSpectrum.comap f) y).asIdeal = Ideal.comap f y.asIdeal
                theorem PrimeSpectrum.comap_comp_apply {R : Type u} {S : Type v} [CommRing R] [CommRing S] {S' : Type u_1} [CommRing S'] (f : R →+* S) (g : S →+* S') (x : PrimeSpectrum S') :
                theorem PrimeSpectrum.localization_comap_range {R : Type u} (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (M : Submonoid R) [IsLocalization M S] :
                Set.range ↑(PrimeSpectrum.comap (algebraMap R S)) = {p | Disjoint M p.asIdeal}

                The comap of a surjective ring homomorphism is a closed embedding between the prime spectra.

                basicOpen r is the open subset containing all prime ideals not containing r.

                Instances For
                  @[simp]
                  theorem PrimeSpectrum.mem_basicOpen {R : Type u} [CommRing R] (f : R) (x : PrimeSpectrum R) :
                  @[simp]
                  theorem PrimeSpectrum.basicOpen_pow {R : Type u} [CommRing R] (f : R) (n : ) (hn : 0 < n) :

                  The prime spectrum of a commutative ring is a compact topological space.

                  The specialization order #

                  We endow PrimeSpectrum R with a partial order, where x ≤ y if and only if y ∈ closure {x}.

                  @[simp]
                  theorem PrimeSpectrum.asIdeal_le_asIdeal {R : Type u} [CommRing R] (x : PrimeSpectrum R) (y : PrimeSpectrum R) :
                  x.asIdeal y.asIdeal x y
                  @[simp]
                  theorem PrimeSpectrum.asIdeal_lt_asIdeal {R : Type u} [CommRing R] (x : PrimeSpectrum R) (y : PrimeSpectrum R) :
                  x.asIdeal < y.asIdeal x < y
                  @[simp]
                  theorem PrimeSpectrum.nhdsOrderEmbedding_apply {R : Type u} [CommRing R] (a : PrimeSpectrum R) :
                  PrimeSpectrum.nhdsOrderEmbedding a = nhds a

                  nhds as an order embedding.

                  Instances For

                    If x specializes to y, then there is a natural map from the localization of y to the localization of x.

                    Instances For

                      The closed point in the prime spectrum of a local ring.

                      Instances For