Documentation

Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic

The Zariski topology on the prime spectrum of a commutative (semi)ring #

Conventions #

We denote subsets of (semi)rings with s, s', etc... whereas we denote subsets of prime spectra with t, t', etc...

Inspiration/contributors #

The contents of this file draw inspiration from https://github.com/ramonfmir/lean-scheme which has contributions from Ramon Fernandez Mir, Kevin Buzzard, Kenny Lau, and Chris Hughes (on an earlier repository).

The Zariski topology on the prime spectrum of a commutative (semi)ring is defined via the closed sets of the topology: they are exactly those sets that are the zero locus of a subset of the ring.

Equations

The antitone order embedding of closed subsets of Spec R into ideals of R.

Equations
Instances For
    theorem PrimeSpectrum.vanishingIdeal_isIrreducible {R : Type u} [CommSemiring R] :
    PrimeSpectrum.vanishingIdeal '' {s : Set (PrimeSpectrum R) | IsIrreducible s} = {P : Ideal R | P.IsPrime}
    theorem PrimeSpectrum.vanishingIdeal_isClosed_isIrreducible {R : Type u} [CommSemiring R] :
    PrimeSpectrum.vanishingIdeal '' {s : Set (PrimeSpectrum R) | IsClosed s IsIrreducible s} = {P : Ideal R | P.IsPrime}
    Equations
    • =

    The prime spectrum of a commutative (semi)ring is a compact topological space.

    Equations
    • =

    The continuous function between prime spectra of commutative (semi)rings induced by a ring homomorphism.

    Equations
    Instances For
      @[simp]
      theorem PrimeSpectrum.comap_asIdeal {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R →+* S) (y : PrimeSpectrum S) :
      ((PrimeSpectrum.comap f) y).asIdeal = Ideal.comap f y.asIdeal
      @[simp]
      theorem PrimeSpectrum.comap_comp {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] {S' : Type u_1} [CommSemiring S'] (f : R →+* S) (g : S →+* S') :
      theorem PrimeSpectrum.comap_comp_apply {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] {S' : Type u_1} [CommSemiring S'] (f : R →+* S) (g : S →+* S') (x : PrimeSpectrum S') :
      @[deprecated PrimeSpectrum.localization_comap_isInducing]

      Alias of PrimeSpectrum.localization_comap_isInducing.

      @[deprecated PrimeSpectrum.localization_comap_isEmbedding]

      Alias of PrimeSpectrum.localization_comap_isEmbedding.

      @[deprecated PrimeSpectrum.comap_isInducing_of_surjective]

      Alias of PrimeSpectrum.comap_isInducing_of_surjective.

      The comap of a surjective ring homomorphism is a closed embedding between the prime spectra.

      @[deprecated PrimeSpectrum.isClosedEmbedding_comap_of_surjective]

      Alias of PrimeSpectrum.isClosedEmbedding_comap_of_surjective.

      The prime spectrum of R × S is homeomorphic to the disjoint union of PrimeSpectrum R and PrimeSpectrum S.

      Equations
      Instances For

        basicOpen r is the open subset containing all prime ideals not containing r.

        Equations
        Instances For
          @[simp]
          theorem PrimeSpectrum.mem_basicOpen {R : Type u} [CommSemiring R] (f : R) (x : PrimeSpectrum R) :
          x PrimeSpectrum.basicOpen f fx.asIdeal
          @[simp]
          @[deprecated PrimeSpectrum.localization_away_isOpenEmbedding]

          Alias of PrimeSpectrum.localization_away_isOpenEmbedding.

          theorem PrimeSpectrum.iSup_basicOpen_eq_top_iff {R : Type u} [CommSemiring R] {ι : Type u_1} {f : ιR} :

          The specialization order #

          We endow PrimeSpectrum R with a partial order, where x ≤ y if and only if y ∈ closure {x}.

          nhds as an order embedding.

          Equations
          Instances For
            @[simp]
            theorem PrimeSpectrum.nhdsOrderEmbedding_apply {R : Type u} [CommSemiring R] (x : PrimeSpectrum R) :
            PrimeSpectrum.nhdsOrderEmbedding x = nhds x
            Equations
            • =

            If x specializes to y, then there is a natural map from the localization of y to the localization of x.

            Equations
            Instances For
              theorem PrimeSpectrum.denseRange_comap_iff_minimalPrimes {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) :
              DenseRange (PrimeSpectrum.comap f) ∀ (I : Ideal R) (h : I minimalPrimes R), { asIdeal := I, isPrime := } Set.range (PrimeSpectrum.comap f)

              Stacks Tag 00FL

              Zero loci of prime ideals are closed irreducible sets in the Zariski topology and any closed irreducible set is a zero locus of some prime ideal.

              Equations
              Instances For
                theorem PrimeSpectrum.isClosedMap_comap_of_isIntegral {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) (hf : f.IsIntegral) :
                theorem PrimeSpectrum.isClosed_comap_singleton_of_isIntegral {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) (hf : f.IsIntegral) (x : PrimeSpectrum S) (hx : IsClosed {x}) :

                Localizations at minimal primes have single-point prime spectra.

                Equations
                Instances For

                  Stacks: Lemma 00ES (3) Zero loci of minimal prime ideals of R are irreducible components in Spec R and any irreducible component is a zero locus of some minimal prime ideal.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The closed point in the prime spectrum of a local ring.

                    Equations
                    Instances For
                      @[deprecated IsLocalRing.closedPoint]

                      Alias of IsLocalRing.closedPoint.


                      The closed point in the prime spectrum of a local ring.

                      Equations
                      Instances For
                        @[deprecated IsLocalRing.specializes_closedPoint]

                        Alias of IsLocalRing.specializes_closedPoint.