Documentation

Mathlib.Analysis.SpecialFunctions.Elliptic.Weierstrass

Weierstrass ℘ functions #

Main definitions #

tags #

Weierstrass p-functions, Weierstrass p functions

structure PeriodPair :

A pair of -linearly independent complex numbers. They span the period lattice in lattice, and are the periods of the elliptic functions we shall construct.

Instances For

    The -basis of determined by a pair of periods.

    Equations
    Instances For
      @[simp]
      @[simp]

      The lattice spanned by a pair of periods.

      Equations
      Instances For
        theorem PeriodPair.mem_lattice {L : PeriodPair} {x : } :
        x L.lattice ∃ (m : ) (n : ), m * L.ω₁ + n * L.ω₂ = x
        theorem PeriodPair.mul_ω₁_add_mul_ω₂_mem_lattice {L : PeriodPair} {α β : } :
        α * L.ω₁ + β * L.ω₂ L.lattice α.den = 1 β.den = 1

        The -basis of the lattice determined by a pair of periods.

        Equations
        Instances For

          The equivalence from the lattice generated by a pair of periods to ℤ × ℤ.

          Equations
          Instances For
            theorem PeriodPair.hasSumLocallyUniformly_aux (L : PeriodPair) (f : L.lattice) (u : L.lattice) (hu : r > 0, Summable (u r)) (hf : r > 0, ∀ᶠ (R : ) in Filter.atTop, ∀ (x : ), x < r∀ (l : L.lattice), l = Rf l x u r l) :
            HasSumLocallyUniformly f fun (x : ) => ∑' (j : L.lattice), f j x
            theorem PeriodPair.℘_bound (r : ) (hr : r > 0) (s : ) (hs : s < r) (l : ) (h : 2 * r l) :
            1 / (s - l) ^ 2 - 1 / l ^ 2 10 * r * l ^ (-3)
            def PeriodPair.℘Except (L : PeriodPair) (l₀ z : ) :

            The Weierstrass ℘ function with the l₀-term missing. This is mainly a tool for calculations where one would want to omit a diverging term.

            Equations
            Instances For
              theorem PeriodPair.hasSumLocallyUniformly_℘Except (L : PeriodPair) (l₀ : ) :
              HasSumLocallyUniformly (fun (l : L.lattice) (z : ) => if l = l₀ then 0 else 1 / (z - l) ^ 2 - 1 / l ^ 2) (L.℘Except l₀)
              theorem PeriodPair.hasSum_℘Except (L : PeriodPair) (l₀ z : ) :
              HasSum (fun (l : L.lattice) => if l = l₀ then 0 else 1 / (z - l) ^ 2 - 1 / l ^ 2) (L.℘Except l₀ z)
              theorem PeriodPair.℘Except_neg (L : PeriodPair) (l₀ z : ) :
              L.℘Except l₀ (-z) = L.℘Except (-l₀) z
              def PeriodPair. (L : PeriodPair) (z : ) :

              The Weierstrass ℘ function.

              Equations
              Instances For
                theorem PeriodPair.℘Except_add (L : PeriodPair) (l₀ : L.lattice) (z : ) :
                L.℘Except (↑l₀) z + (1 / (z - l₀) ^ 2 - 1 / l₀ ^ 2) = L. z
                theorem PeriodPair.℘Except_def (L : PeriodPair) (l₀ : L.lattice) (z : ) :
                L.℘Except (↑l₀) z = L. z + (1 / l₀ ^ 2 - 1 / (z - l₀) ^ 2)
                theorem PeriodPair.℘Except_of_notMem (L : PeriodPair) (l₀ : ) (hl : l₀L.lattice) :
                L.℘Except l₀ = L.
                theorem PeriodPair.hasSumLocallyUniformly_℘ (L : PeriodPair) :
                HasSumLocallyUniformly (fun (l : L.lattice) (z : ) => 1 / (z - l) ^ 2 - 1 / l ^ 2) L.
                theorem PeriodPair.hasSum_℘ (L : PeriodPair) (z : ) :
                HasSum (fun (l : L.lattice) => 1 / (z - l) ^ 2 - 1 / l ^ 2) (L. z)
                @[simp]
                theorem PeriodPair.℘_neg (L : PeriodPair) (z : ) :
                L. (-z) = L. z