Documentation

Mathlib.Analysis.SpecialFunctions.Elliptic.Weierstrass

Weierstrass functions #

Main definitions and results #

tags #

Weierstrass p-functions, Weierstrass p functions

structure PeriodPair :

A pair of -linearly independent complex numbers. They span the period lattice in lattice, and are the periods of the elliptic functions we shall construct.

Instances For

    The -basis of determined by a pair of periods.

    Equations
    Instances For
      @[simp]
      @[simp]

      The lattice spanned by a pair of periods.

      Equations
      Instances For
        theorem PeriodPair.mem_lattice {L : PeriodPair} {x : } :
        x L.lattice ∃ (m : ) (n : ), m * L.ω₁ + n * L.ω₂ = x
        theorem PeriodPair.mul_ω₁_add_mul_ω₂_mem_lattice {L : PeriodPair} {α β : } :
        α * L.ω₁ + β * L.ω₂ L.lattice α.den = 1 β.den = 1

        The -basis of the lattice determined by a pair of periods.

        Equations
        Instances For

          The equivalence from the lattice generated by a pair of periods to ℤ × ℤ.

          Equations
          Instances For
            theorem PeriodPair.hasSumLocallyUniformly_aux (L : PeriodPair) (f : L.lattice) (u : L.lattice) (hu : r > 0, Summable (u r)) (hf : r > 0, ∀ᶠ (R : ) in Filter.atTop, ∀ (x : ), x < r∀ (l : L.lattice), l = Rf l x u r l) :
            HasSumLocallyUniformly f fun (x : ) => ∑' (j : L.lattice), f j x
            theorem PeriodPair.weierstrassP_bound (r : ) (hr : 0 < r) (s : ) (hs : s < r) (l : ) (h : 2 * r l) :
            1 / (s - l) ^ 2 - 1 / l ^ 2 10 * r * l ^ (-3)

            The Weierstrass function with the l₀-term missing. This is mainly a tool for calculations where one would want to omit a diverging term. This has the notation ℘[L - l₀] in the namespace PeriodPairs.

            Equations
            Instances For

              The Weierstrass function with the l₀-term missing. This is mainly a tool for calculations where one would want to omit a diverging term. This has the notation ℘[L - l₀] in the namespace PeriodPairs.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem PeriodPair.hasSumLocallyUniformly_weierstrassPExcept (L : PeriodPair) (l₀ : ) :
                HasSumLocallyUniformly (fun (l : L.lattice) (z : ) => if l = l₀ then 0 else 1 / (z - l) ^ 2 - 1 / l ^ 2) (L.weierstrassPExcept l₀)
                theorem PeriodPair.hasSum_weierstrassPExcept (L : PeriodPair) (l₀ z : ) :
                HasSum (fun (l : L.lattice) => if l = l₀ then 0 else 1 / (z - l) ^ 2 - 1 / l ^ 2) (L.weierstrassPExcept l₀ z)

                The Weierstrass function. This has the notation ℘[L] in the namespace PeriodPairs.

                Equations
                Instances For

                  The Weierstrass function. This has the notation ℘[L] in the namespace PeriodPairs.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem PeriodPair.weierstrassPExcept_add (L : PeriodPair) (l₀ : L.lattice) (z : ) :
                    L.weierstrassPExcept (↑l₀) z + (1 / (z - l₀) ^ 2 - 1 / l₀ ^ 2) = L.weierstrassP z
                    theorem PeriodPair.weierstrassPExcept_def (L : PeriodPair) (l₀ : L.lattice) (z : ) :
                    L.weierstrassPExcept (↑l₀) z = L.weierstrassP z + (1 / l₀ ^ 2 - 1 / (z - l₀) ^ 2)
                    theorem PeriodPair.hasSumLocallyUniformly_weierstrassP (L : PeriodPair) :
                    HasSumLocallyUniformly (fun (l : L.lattice) (z : ) => 1 / (z - l) ^ 2 - 1 / l ^ 2) L.weierstrassP
                    theorem PeriodPair.hasSum_weierstrassP (L : PeriodPair) (z : ) :
                    HasSum (fun (l : L.lattice) => 1 / (z - l) ^ 2 - 1 / l ^ 2) (L.weierstrassP z)

                    The derivative of Weierstrass function with the l₀-term missing. This is mainly a tool for calculations where one would want to omit a diverging term. This has the notation ℘'[L - l₀] in the namespace PeriodPairs.

                    Equations
                    Instances For

                      The derivative of Weierstrass function with the l₀-term missing. This is mainly a tool for calculations where one would want to omit a diverging term. This has the notation ℘'[L - l₀] in the namespace PeriodPairs.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem PeriodPair.hasSumLocallyUniformly_derivWeierstrassPExcept (L : PeriodPair) (l₀ : ) :
                        HasSumLocallyUniformly (fun (l : L.lattice) (z : ) => if l = l₀ then 0 else -2 / (z - l) ^ 3) (L.derivWeierstrassPExcept l₀)
                        theorem PeriodPair.hasSum_derivWeierstrassPExcept (L : PeriodPair) (l₀ z : ) :
                        HasSum (fun (l : L.lattice) => if l = l₀ then 0 else -2 / (z - l) ^ 3) (L.derivWeierstrassPExcept l₀ z)
                        @[simp]
                        theorem PeriodPair.weierstrassP_add_coe (L : PeriodPair) (z : ) (l : L.lattice) :
                        L.weierstrassP (z + l) = L.weierstrassP z
                        @[simp]
                        theorem PeriodPair.weierstrassP_coe (L : PeriodPair) (l : L.lattice) :
                        L.weierstrassP l = 0
                        @[simp]
                        theorem PeriodPair.weierstrassP_sub_coe (L : PeriodPair) (z : ) (l : L.lattice) :
                        L.weierstrassP (z - l) = L.weierstrassP z

                        The derivative of Weierstrass function. This has the notation ℘'[L] in the namespace PeriodPairs.

                        Equations
                        Instances For

                          The Weierstrass function. This has the notation ℘[L] in the namespace PeriodPairs.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            theorem PeriodPair.derivWeierstrassPExcept_sub (L : PeriodPair) (l₀ : L.lattice) (z : ) :
                            L.derivWeierstrassPExcept (↑l₀) z - 2 / (z - l₀) ^ 3 = L.derivWeierstrassP z
                            theorem PeriodPair.derivWeierstrassPExcept_def (L : PeriodPair) (l₀ : L.lattice) (z : ) :
                            L.derivWeierstrassPExcept (↑l₀) z = L.derivWeierstrassP z + 2 / (z - l₀) ^ 3
                            theorem PeriodPair.hasSum_derivWeierstrassP (L : PeriodPair) (z : ) :
                            HasSum (fun (l : L.lattice) => -2 / (z - l) ^ 3) (L.derivWeierstrassP z)
                            @[simp]

                            deriv ℘ = ℘'. This is true globally because of junk values.