Documentation

Mathlib.RepresentationTheory.Rep

Rep k G is the category of k-linear representations of G. #

If V : Rep k G, there is a coercion that allows you to treat V as a type, and this type comes equipped with a Module k V instance. Also V.ρ gives the homomorphism G →* (V →ₗ[k] V).

Conversely, given a homomorphism ρ : G →* (V →ₗ[k] V), you can construct the bundled representation as Rep.of ρ.

We construct the categorical equivalence Rep k G ≌ ModuleCat (MonoidAlgebra k G). We verify that Rep k G is a k-linear abelian symmetric monoidal category with all (co)limits.

@[reducible, inline]
noncomputable abbrev Rep (k G : Type u) [Ring k] [Monoid G] :
Type (u + 1)

The category of k-linear representations of a monoid G.

Equations
Instances For
    noncomputable instance instLinearRep (k G : Type u) [CommRing k] [Monoid G] :
    Equations
    noncomputable instance Rep.instCoeSortType {k G : Type u} [CommRing k] [Monoid G] :
    CoeSort (Rep k G) (Type u)
    Equations
    noncomputable instance Rep.instModuleCarrierVModuleCat {k G : Type u} [CommRing k] [Monoid G] (V : Rep k G) :
    Module k V.V
    Equations
    noncomputable def Rep.ρ {k G : Type u} [CommRing k] [Monoid G] (V : Rep k G) :
    Representation k G V.V

    Specialize the existing Action.ρ, changing the type to Representation k G V.

    Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev Rep.of {k G : Type u} [CommRing k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] (ρ : G →* V →ₗ[k] V) :
      Rep k G

      Lift an unbundled representation to Rep.

      Equations
      Instances For
        theorem Rep.coe_of {k G : Type u} [CommRing k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] (ρ : G →* V →ₗ[k] V) :
        (of ρ).V = V
        @[simp]
        theorem Rep.of_ρ {k G : Type u} [CommRing k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] (ρ : G →* V →ₗ[k] V) :
        (of ρ).ρ = ρ
        @[simp]
        theorem Rep.ρ_hom {k G : Type u} [CommRing k] [Monoid G] {X : Rep k G} (g : G) :
        @[simp]
        theorem Rep.ofHom_ρ {k G : Type u} [CommRing k] [Monoid G] {X : Rep k G} (g : G) :
        @[deprecated Representation.inv_self_apply (since := "2025-05-09")]
        theorem Rep.ρ_inv_self_apply {k : Type u} [CommRing k] {G : Type u} [Group G] (A : Rep k G) (g : G) (x : A.V) :
        (A.ρ g⁻¹) ((A.ρ g) x) = x
        @[deprecated Representation.self_inv_apply (since := "2025-05-09")]
        theorem Rep.ρ_self_inv_apply {k : Type u} [CommRing k] {G : Type u} [Group G] {A : Rep k G} (g : G) (x : A.V) :
        (A.ρ g) ((A.ρ g⁻¹) x) = x
        theorem Rep.hom_comm_apply {k G : Type u} [CommRing k] [Monoid G] {A B : Rep k G} (f : A B) (g : G) (x : A.V) :
        @[reducible, inline]
        noncomputable abbrev Rep.trivial (k G : Type u) [CommRing k] [Monoid G] (V : Type u) [AddCommGroup V] [Module k V] :
        Rep k G

        The trivial k-linear G-representation on a k-module V.

        Equations
        Instances For
          theorem Rep.trivial_def {k G : Type u} [CommRing k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] (g : G) :
          noncomputable def Rep.trivialFunctor (k G : Type u) [CommRing k] [Monoid G] :

          The functor equipping a module with the trivial representation.

          Equations
          Instances For
            @[simp]
            theorem Rep.trivialFunctor_map_hom (k G : Type u) [CommRing k] [Monoid G] {X✝ Y✝ : ModuleCat k} (f : X✝ Y✝) :
            ((trivialFunctor k G).map f).hom = f
            @[simp]
            theorem Rep.trivialFunctor_obj_V (k G : Type u) [CommRing k] [Monoid G] (V : ModuleCat k) :
            ((trivialFunctor k G).obj V).V = V
            @[reducible, inline]
            noncomputable abbrev Rep.IsTrivial {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) :

            A predicate for representations that fix every element.

            Equations
            Instances For
              instance Rep.instIsTrivialTrivial {k G : Type u} [CommRing k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] :
              instance Rep.instIsTrivialOfOfIsTrivial {k G : Type u} [CommRing k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] (ρ : Representation k G V) [ρ.IsTrivial] :
              @[reducible, inline]
              noncomputable abbrev Rep.ofQuotient {k : Type u} [CommRing k] {G : Type u} [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] [Representation.IsTrivial (MonoidHom.comp A.ρ S.subtype)] :
              Rep k (G S)

              Given a normal subgroup S ≤ G, a G-representation ρ which is trivial on S factors through G ⧸ S.

              Equations
              Instances For
                @[reducible, inline]
                noncomputable abbrev Rep.resOfQuotientIso {k : Type u} [CommRing k] {G : Type u} [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] [Representation.IsTrivial (MonoidHom.comp A.ρ S.subtype)] :

                A G-representation A on which a normal subgroup S ≤ G acts trivially induces a G ⧸ S-representation on A, and composing this with the quotient map G → G ⧸ S gives the original representation by definition. Useful for typechecking.

                Equations
                Instances For
                  @[reducible, inline]
                  noncomputable abbrev Rep.subrepresentation {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) (W : Submodule k A.V) (le_comap : ∀ (g : G), W Submodule.comap (A.ρ g) W) :
                  Rep k G

                  Given a k-linear G-representation (V, ρ), this is the representation defined by restricting ρ to a G-invariant k-submodule of V.

                  Equations
                  Instances For
                    noncomputable def Rep.subtype {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) (W : Submodule k A.V) (le_comap : ∀ (g : G), W Submodule.comap (A.ρ g) W) :
                    A.subrepresentation W le_comap A

                    The natural inclusion of a subrepresentation into the ambient representation.

                    Equations
                    Instances For
                      @[simp]
                      theorem Rep.subtype_hom {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) (W : Submodule k A.V) (le_comap : ∀ (g : G), W Submodule.comap (A.ρ g) W) :
                      @[reducible, inline]
                      noncomputable abbrev Rep.quotient {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) (W : Submodule k A.V) (le_comap : ∀ (g : G), W Submodule.comap (A.ρ g) W) :
                      Rep k G

                      Given a k-linear G-representation (V, ρ) and a G-invariant k-submodule W ≤ V, this is the representation induced on V ⧸ W by ρ.

                      Equations
                      Instances For
                        noncomputable def Rep.mkQ {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) (W : Submodule k A.V) (le_comap : ∀ (g : G), W Submodule.comap (A.ρ g) W) :
                        A A.quotient W le_comap

                        The natural projection from a representation to its quotient by a subrepresentation.

                        Equations
                        Instances For
                          @[simp]
                          theorem Rep.mkQ_hom {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) (W : Submodule k A.V) (le_comap : ∀ (g : G), W Submodule.comap (A.ρ g) W) :
                          (A.mkQ W le_comap).hom = ModuleCat.ofHom W.mkQ
                          @[simp]
                          @[simp]
                          theorem Rep.res_obj_ρ {k G : Type u} [CommRing k] [Monoid G] {H : Type u} [Monoid H] (f : G →* H) (A : Rep k H) (g : G) :
                          (ρ ((Action.res (ModuleCat k) f).obj A)) g = A.ρ (f g)
                          noncomputable def Rep.linearization (k G : Type u) [CommRing k] [Monoid G] :

                          The monoidal functor sending a type H with a G-action to the induced k-linear G-representation on k[H].

                          Equations
                          Instances For
                            @[simp]
                            theorem Rep.coe_linearization_obj {k G : Type u} [CommRing k] [Monoid G] (X : Action (Type u) G) :
                            ((linearization k G).obj X).V = (X.V →₀ k)
                            theorem Rep.linearization_obj_ρ {k G : Type u} [CommRing k] [Monoid G] (X : Action (Type u) G) (g : G) :
                            ((linearization k G).obj X).ρ g = Finsupp.lmapDomain k k (X.ρ g)
                            @[simp]
                            theorem Rep.coe_linearization_obj_ρ {k G : Type u} [CommRing k] [Monoid G] (X : Action (Type u) G) (g : G) :
                            ((linearization k G).obj X).ρ g = Finsupp.lmapDomain k k (X.ρ g)
                            theorem Rep.linearization_single {k G : Type u} [CommRing k] [Monoid G] (X : Action (Type u) G) (g : G) (x : X.V) (r : k) :
                            (((linearization k G).obj X).ρ g) (Finsupp.single x r) = Finsupp.single (X.ρ g x) r
                            @[deprecated "Use `Rep.linearization_single` instead" (since := "2025-06-02")]
                            theorem Rep.linearization_of {k G : Type u} [CommRing k] [Monoid G] (X : Action (Type u) G) (g : G) (x : X.V) :
                            (((linearization k G).obj X).ρ g) (Finsupp.single x 1) = Finsupp.single (X.ρ g x) 1
                            @[simp]
                            theorem Rep.linearization_map_hom {k G : Type u} [CommRing k] [Monoid G] {X Y : Action (Type u) G} (f : X Y) :
                            theorem Rep.linearization_map_hom_single {k G : Type u} [CommRing k] [Monoid G] {X Y : Action (Type u) G} (f : X Y) (x : X.V) (r : k) :
                            noncomputable def Rep.linearizationTrivialIso (k G : Type u) [CommRing k] [Monoid G] (X : Type u) :
                            (linearization k G).obj { V := X, ρ := 1 } trivial k G (X →₀ k)

                            The linearization of a type X on which G acts trivially is the trivial G-representation on k[X].

                            Equations
                            Instances For
                              @[reducible, inline]
                              noncomputable abbrev Rep.ofMulAction (k G : Type u) [CommRing k] [Monoid G] (H : Type u) [MulAction G H] :
                              Rep k G

                              Given a G-action on H, this is k[H] bundled with the natural representation G →* End(k[H]) as a term of type Rep k G.

                              Equations
                              Instances For
                                @[reducible, inline]
                                noncomputable abbrev Rep.leftRegular (k G : Type u) [CommRing k] [Monoid G] :
                                Rep k G

                                The k-linear G-representation on k[G], induced by left multiplication.

                                Equations
                                Instances For
                                  @[reducible, inline]
                                  noncomputable abbrev Rep.diagonal (k G : Type u) [CommRing k] [Monoid G] (n : ) :
                                  Rep k G

                                  The k-linear G-representation on k[Gⁿ], induced by left multiplication.

                                  Equations
                                  Instances For
                                    noncomputable def Rep.diagonalOneIsoLeftRegular (k G : Type u) [CommRing k] [Monoid G] :

                                    The natural isomorphism between the representations on k[G¹] and k[G] induced by left multiplication in G.

                                    Equations
                                    Instances For
                                      noncomputable def Rep.ofMulActionSubsingletonIsoTrivial (k G : Type u) [CommRing k] [Monoid G] (H : Type u) [Subsingleton H] [MulOneClass H] [MulAction G H] :
                                      ofMulAction k G H trivial k G k

                                      When H = {1}, the G-representation on k[H] induced by an action of G on H is isomorphic to the trivial representation on k.

                                      Equations
                                      Instances For
                                        noncomputable def Rep.linearizationOfMulActionIso (k G : Type u) [CommRing k] [Monoid G] (H : Type u) [MulAction G H] :

                                        The linearization of a type H with a G-action is definitionally isomorphic to the k-linear G-representation on k[H] induced by the G-action on H.

                                        Equations
                                        Instances For
                                          noncomputable def Rep.ofDistribMulAction (k G A : Type u) [CommRing k] [Monoid G] [AddCommGroup A] [Module k A] [DistribMulAction G A] [SMulCommClass G k A] :
                                          Rep k G

                                          Turns a k-module A with a compatible DistribMulAction of a monoid G into a k-linear G-representation on A.

                                          Equations
                                          Instances For
                                            @[simp]
                                            theorem Rep.ofDistribMulAction_ρ_apply_apply (k G A : Type u) [CommRing k] [Monoid G] [AddCommGroup A] [Module k A] [DistribMulAction G A] [SMulCommClass G k A] (g : G) (a : A) :
                                            ((ofDistribMulAction k G A).ρ g) a = g a
                                            noncomputable def Rep.ofAlgebraAut (R S : Type) [CommRing R] [CommRing S] [Algebra R S] :

                                            Given an R-algebra S, the -linear representation associated to the natural action of S ≃ₐ[R] S on S.

                                            Equations
                                            Instances For
                                              noncomputable def Rep.ofMulDistribMulAction (M G : Type) [Monoid M] [CommGroup G] [MulDistribMulAction M G] :

                                              Turns a CommGroup G with a MulDistribMulAction of a monoid M into a -linear M-representation on Additive G.

                                              Equations
                                              Instances For
                                                noncomputable def Rep.ofAlgebraAutOnUnits (R S : Type) [CommRing R] [CommRing S] [Algebra R S] :

                                                Given an R-algebra S, the -linear representation associated to the natural action of S ≃ₐ[R] S on .

                                                Equations
                                                Instances For
                                                  noncomputable def Rep.leftRegularHom {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) (x : A.V) :

                                                  Given an element x : A, there is a natural morphism of representations k[G] ⟶ A sending g ↦ A.ρ(g)(x).

                                                  Equations
                                                  Instances For
                                                    @[simp]
                                                    theorem Rep.leftRegularHom_hom {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) (x : A.V) :
                                                    (A.leftRegularHom x).hom = ModuleCat.ofHom ((Finsupp.lift (↑A.V) k G) fun (g : G) => (A.ρ g) x)
                                                    theorem Rep.leftRegularHom_hom_single {k G : Type u} [CommRing k] [Monoid G] {A : Rep k G} (g : G) (x : A.V) (r : k) :
                                                    noncomputable def Rep.leftRegularHomEquiv {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) :
                                                    (leftRegular k G A) ≃ₗ[k] A.V

                                                    Given a k-linear G-representation A, there is a k-linear isomorphism between representation morphisms Hom(k[G], A) and A.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      @[simp]
                                                      theorem Rep.leftRegularHomEquiv_symm_apply {k G : Type u} [CommRing k] [Monoid G] (A : Rep k G) (x : A.V) :
                                                      @[reducible, inline]
                                                      noncomputable abbrev Rep.finsupp {k G : Type u} [CommRing k] [Monoid G] (α : Type u) (A : Rep k G) :
                                                      Rep k G

                                                      The representation on α →₀ A defined pointwise by a representation on A.

                                                      Equations
                                                      Instances For
                                                        @[reducible, inline]
                                                        noncomputable abbrev Rep.free (k G : Type u) [CommRing k] [Monoid G] (α : Type u) :
                                                        Rep k G

                                                        The representation on α →₀ k[G] defined pointwise by the left regular representation on k[G].

                                                        Equations
                                                        Instances For
                                                          noncomputable def Rep.freeLift {k G : Type u} [CommRing k] [Monoid G] {α : Type u} (A : Rep k G) [DecidableEq α] (f : αA.V) :
                                                          free k G α A

                                                          Given f : α → A, the natural representation morphism (α →₀ k[G]) ⟶ A sending single a (single g r) ↦ r • A.ρ g (f a).

                                                          Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem Rep.freeLift_hom {k G : Type u} [CommRing k] [Monoid G] {α : Type u} (A : Rep k G) [DecidableEq α] (f : αA.V) :
                                                            (A.freeLift f).hom = ModuleCat.ofHom ((Finsupp.linearCombination k fun (x : α × G) => (A.ρ x.2) (f x.1)) ∘ₗ (Finsupp.finsuppProdLEquiv k).symm)
                                                            theorem Rep.freeLift_hom_single_single {k G : Type u} [CommRing k] [Monoid G] {α : Type u} {A : Rep k G} [DecidableEq α] (f : αA.V) (i : α) (g : G) (r : k) :
                                                            noncomputable def Rep.freeLiftLEquiv {k G : Type u} [CommRing k] [Monoid G] (α : Type u) (A : Rep k G) [DecidableEq α] :
                                                            (free k G α A) ≃ₗ[k] αA.V

                                                            The natural linear equivalence between functions α → A and representation morphisms (α →₀ k[G]) ⟶ A.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              @[simp]
                                                              theorem Rep.freeLiftLEquiv_symm_apply {k G : Type u} [CommRing k] [Monoid G] (α : Type u) (A : Rep k G) [DecidableEq α] (f : αA.V) :
                                                              @[simp]
                                                              theorem Rep.freeLiftLEquiv_apply {k G : Type u} [CommRing k] [Monoid G] (α : Type u) (A : Rep k G) [DecidableEq α] (f : free k G α A) (i : α) :
                                                              theorem Rep.free_ext {k G : Type u} [CommRing k] [Monoid G] {α : Type u} {A : Rep k G} [DecidableEq α] (f g : free k G α A) (h : ∀ (i : α), (CategoryTheory.ConcreteCategory.hom f.hom) (Finsupp.single i (Finsupp.single 1 1)) = (CategoryTheory.ConcreteCategory.hom g.hom) (Finsupp.single i (Finsupp.single 1 1))) :
                                                              f = g

                                                              Given representations A, B and a type α, this is the natural representation isomorphism (α →₀ A) ⊗ B ≅ (A ⊗ B) →₀ α sending single x a ⊗ₜ b ↦ single x (a ⊗ₜ b).

                                                              Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem Rep.finsuppTensorLeft_hom_hom {k G : Type u} [CommRing k] [Monoid G] (A B : Rep k G) (α : Type u) [DecidableEq α] :
                                                                @[simp]
                                                                theorem Rep.finsuppTensorLeft_inv_hom {k G : Type u} [CommRing k] [Monoid G] (A B : Rep k G) (α : Type u) [DecidableEq α] :

                                                                Given representations A, B and a type α, this is the natural representation isomorphism A ⊗ (α →₀ B) ≅ (A ⊗ B) →₀ α sending a ⊗ₜ single x b ↦ single x (a ⊗ₜ b).

                                                                Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem Rep.finsuppTensorRight_hom_hom {k G : Type u} [CommRing k] [Monoid G] (A B : Rep k G) (α : Type u) [DecidableEq α] :
                                                                  @[simp]
                                                                  theorem Rep.finsuppTensorRight_inv_hom {k G : Type u} [CommRing k] [Monoid G] (A B : Rep k G) (α : Type u) [DecidableEq α] :

                                                                  The natural isomorphism sending single g r₁ ⊗ single a r₂ ↦ single a (single g r₁r₂).

                                                                  Equations
                                                                  • One or more equations did not get rendered due to their size.
                                                                  Instances For

                                                                    An isomorphism of k-linear representations of G from k[Gⁿ⁺¹] to k[G] ⊗ₖ k[Gⁿ] (on which G acts by ρ(g₁)(g₂ ⊗ x) = (g₁ * g₂) ⊗ x) sending (g₀, ..., gₙ) to g₀ ⊗ (g₀⁻¹g₁, g₁⁻¹g₂, ..., gₙ₋₁⁻¹gₙ). The inverse sends g₀ ⊗ (g₁, ..., gₙ) to (g₀, g₀g₁, ..., g₀g₁...gₙ).

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem Rep.diagonalSuccIsoTensorTrivial_hom_hom_single {k G : Type u} [CommRing k] [Group G] {n : } (f : Fin (n + 1)G) (a : k) :
                                                                      theorem Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left {k G : Type u} [CommRing k] [Group G] {n : } (g : G) (f : (Fin nG) →₀ k) (r : k) :
                                                                      noncomputable def Rep.diagonalSuccIsoFree (k G : Type u) [CommRing k] [Group G] (n : ) [DecidableEq (Fin nG)] :
                                                                      diagonal k G (n + 1) free k G (Fin nG)

                                                                      Representation isomorphism k[Gⁿ⁺¹] ≅ (Gⁿ →₀ k[G]), where the righthand representation is defined pointwise by the left regular representation on k[G]. The map sends single (g₀, ..., gₙ) a ↦ single (g₀⁻¹g₁, ..., gₙ₋₁⁻¹gₙ) (single g₀ a).

                                                                      Equations
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem Rep.diagonalSuccIsoFree_hom_hom_single {k G : Type u} [CommRing k] [Group G] {n : } [DecidableEq (Fin nG)] (f : Fin (n + 1)G) (a : k) :
                                                                        theorem Rep.diagonalSuccIsoFree_inv_hom_single {k G : Type u} [CommRing k] [Group G] {n : } [DecidableEq (Fin nG)] (g : G →₀ k) (f : Fin nG) :
                                                                        noncomputable def Rep.ihom {k G : Type u} [CommRing k] [Group G] (A : Rep k G) :

                                                                        Given a k-linear G-representation (A, ρ₁), this is the 'internal Hom' functor sending (B, ρ₂) to the representation Homₖ(A, B) that maps g : G and f : A →ₗ[k] B to (ρ₂ g) ∘ₗ f ∘ₗ (ρ₁ g⁻¹).

                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem Rep.ihom_obj_V_carrier {k G : Type u} [CommRing k] [Group G] (A B : Rep k G) :
                                                                          (A.ihom.obj B).V = (A.V →ₗ[k] B.V)
                                                                          @[simp]
                                                                          theorem Rep.ihom_obj_ρ {k G : Type u} [CommRing k] [Group G] (A B : Rep k G) :
                                                                          @[simp]
                                                                          theorem Rep.ihom_map_hom {k G : Type u} [CommRing k] [Group G] (A : Rep k G) {X Y : Rep k G} (f : X Y) :
                                                                          @[simp]
                                                                          theorem Rep.ihom_obj_V_isModule {k G : Type u} [CommRing k] [Group G] (A B : Rep k G) :
                                                                          @[simp]
                                                                          theorem Rep.ihom_obj_ρ_apply {k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (g : G) (x : A.V →ₗ[k] B.V) :
                                                                          ((A.ihom.obj B).ρ g) x = B.ρ g ∘ₗ x ∘ₗ A.ρ g⁻¹
                                                                          noncomputable def Rep.homEquiv {k G : Type u} [CommRing k] [Group G] (A B C : Rep k G) :

                                                                          Given a k-linear G-representation A, this is the Hom-set bijection in the adjunction A ⊗ - ⊣ ihom(A, -). It sends f : A ⊗ B ⟶ C to a Rep k G morphism defined by currying the k-linear map underlying f, giving a map A →ₗ[k] B →ₗ[k] C, then flipping the arguments.

                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For

                                                                            Porting note: if we generate this with @[simps] the linter complains some types in the LHS simplify.

                                                                            theorem Rep.homEquiv_symm_apply_hom {k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (f : B A.ihom.obj C) :

                                                                            Porting note: if we generate this with @[simps] the linter complains some types in the LHS simplify.

                                                                            noncomputable instance Rep.instMonoidalClosed {k G : Type u} [CommRing k] [Group G] :
                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            @[simp]
                                                                            theorem Rep.ihom_obj_ρ_def {k G : Type u} [CommRing k] [Group G] (A B : Rep k G) :
                                                                            @[simp]
                                                                            theorem Rep.homEquiv_def {k G : Type u} [CommRing k] [Group G] (A B C : Rep k G) :
                                                                            @[simp]
                                                                            theorem Rep.ihom_ev_app_hom {k G : Type u} [CommRing k] [Group G] (A B : Rep k G) :

                                                                            There is a k-linear isomorphism between the sets of representation morphismsHom(A ⊗ B, C) and Hom(B, Homₖ(A, C)).

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For

                                                                              There is a k-linear isomorphism between the sets of representation morphismsHom(A ⊗ B, C) and Hom(A, Homₖ(B, C)).

                                                                              Equations
                                                                              Instances For
                                                                                noncomputable def Representation.repOfTprodIso {k G : Type u} [CommRing k] [Monoid G] {V W : Type u} [AddCommGroup V] [AddCommGroup W] [Module k V] [Module k W] (ρ : Representation k G V) (τ : Representation k G W) :

                                                                                Tautological isomorphism to help Lean in typechecking.

                                                                                Equations
                                                                                Instances For

                                                                                  The categorical equivalence Rep k G ≌ Module.{u} (MonoidAlgebra k G). #

                                                                                  theorem Rep.to_Module_monoidAlgebra_map_aux {k : Type u_1} {G : Type u_2} [CommRing k] [Monoid G] (V : Type u_3) (W : Type u_4) [AddCommGroup V] [AddCommGroup W] [Module k V] [Module k W] (ρ : G →* V →ₗ[k] V) (σ : G →* W →ₗ[k] W) (f : V →ₗ[k] W) (w : ∀ (g : G), f ∘ₗ ρ g = σ g ∘ₗ f) (r : MonoidAlgebra k G) (x : V) :
                                                                                  f ((((MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) r) x) = (((MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) r) (f x)

                                                                                  Auxiliary lemma for toModuleMonoidAlgebra.

                                                                                  noncomputable def Rep.toModuleMonoidAlgebraMap {k G : Type u} [CommRing k] [Monoid G] {V W : Rep k G} (f : V W) :

                                                                                  Auxiliary definition for toModuleMonoidAlgebra.

                                                                                  Equations
                                                                                  Instances For

                                                                                    Functorially convert a representation of G into a module over MonoidAlgebra k G.

                                                                                    Equations
                                                                                    • One or more equations did not get rendered due to their size.
                                                                                    Instances For

                                                                                      Functorially convert a module over MonoidAlgebra k G into a representation of G.

                                                                                      Equations
                                                                                      • One or more equations did not get rendered due to their size.
                                                                                      Instances For

                                                                                        Auxiliary definition for equivalenceModuleMonoidAlgebra.

                                                                                        Equations
                                                                                        Instances For
                                                                                          theorem Rep.unit_iso_comm {k G : Type u} [CommRing k] [Monoid G] (V : Rep k G) (g : G) (x : V.V) :
                                                                                          noncomputable def Rep.unitIso {k G : Type u} [CommRing k] [Monoid G] (V : Rep k G) :

                                                                                          Auxiliary definition for equivalenceModuleMonoidAlgebra.

                                                                                          Equations
                                                                                          • One or more equations did not get rendered due to their size.
                                                                                          Instances For
                                                                                            noncomputable def Rep.equivalenceModuleMonoidAlgebra {k G : Type u} [CommRing k] [Monoid G] :

                                                                                            The categorical equivalence Rep k G ≌ ModuleCat (MonoidAlgebra k G).

                                                                                            Equations
                                                                                            • One or more equations did not get rendered due to their size.
                                                                                            Instances For
                                                                                              instance Rep.free_projective {k : Type u} [CommRing k] {G α : Type u} [Group G] :
                                                                                              instance Rep.diagonal_succ_projective {k : Type u} [CommRing k] {G : Type u} [Group G] {n : } [DecidableEq (Fin nG)] :