Helper structure in order to construct pairings #
In this file, we introduce a helper structure Subcomplex.PairingCore
in order to construct a pairing for a subcomplex of a simplicial set.
The main difference with Subcomplex.Pairing are that we provide
an index type ι and a function dim : ι → ℕ which allow to
parametrize type (II) and (I) simplices in such a way that, definitionally,
their dimensions are respectively dim s or dim s + 1 for s : ι.
An helper structure in order to construct a pairing for a subcomplex of a
simplicial set X. The main difference with Pairing is that we provide
an index type ι and a function dim : ι → ℕ which allow to
parametrize type (I) simplices as simplex s : X _⦋dim s + 1⦌ for s : ι,
and type (II) simplices as a face of simplex s in X _⦋dim s⦌.
- ι : Type v
the index type
the dimension of each type (II) simplex
- simplex (s : self.ι) : X.obj (Opposite.op (SimplexCategory.mk (self.dim s + 1)))
the family of type (I) simplices
the corresponding type (II) simplex is the
1-codimensional face given by this index- nonDegenerate₂ (s : self.ι) : CategoryTheory.SimplicialObject.δ X (self.index s) (self.simplex s) ∈ X.nonDegenerate (self.dim s)
- notMem₁ (s : self.ι) : self.simplex s ∉ A.obj (Opposite.op (SimplexCategory.mk (self.dim s + 1)))
- notMem₂ (s : self.ι) : CategoryTheory.SimplicialObject.δ X (self.index s) (self.simplex s) ∉ A.obj (Opposite.op (SimplexCategory.mk (self.dim s)))
Instances For
The PairingCore structure induced by a pairing. The opposite construction
is PairingCore.pairing.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The type (I) simplices of h : A.PairingCore, as a family indexed by h.ι.
Equations
- h.type₁ s = SSet.Subcomplex.N.mk (h.simplex s) ⋯ ⋯
Instances For
The type (II) simplices of h : A.PairingCore, as a family indexed by h.ι.
Equations
- h.type₂ s = SSet.Subcomplex.N.mk (CategoryTheory.SimplicialObject.δ X (h.index s) (h.simplex s)) ⋯ ⋯
Instances For
The type (I) simplices of h : A.PairingCore, as a subset of A.N.
Instances For
The type (II) simplices of h : A.PairingCore, as a subset of A.N.
Instances For
The bijection h.ι ≃ h.I when h : A.PairingCore.
Equations
- h.equivI = Equiv.ofInjective h.type₁ ⋯
Instances For
The bijection h.ι ≃ h.II when h : A.PairingCore.
Equations
- h.equivII = Equiv.ofInjective h.type₂ ⋯
Instances For
The pairing induced by h : A.PairingCore.
Equations
Instances For
The condition that h : A.PairingCore is proper, i.e. for each s : h.ι,
the type (II) simplex h.type₂ s is uniquely a 1-codimensional
face of the type (I) simplex h.type₁ s.
- isUniquelyCodimOneFace (s : h.ι) : (h.type₂ s).IsUniquelyCodimOneFace (h.type₁ s).toS
Instances
The ancestrality relation on the index type of h : A.PairingCore.
Instances For
When the ancestrality relation is well founded, we say that h : A.PairingCore
is regular.
- wf : WellFounded h.AncestralRel