Documentation

Mathlib.AlgebraicGeometry.AffineTransitionLimit

Inverse limits of schemes with affine transition maps #

In this file, we develop API for inverse limits of schemes with affine transition maps, following EGA IV 8 and https://stacks.math.columbia.edu/tag/01YT.

Suppose we have a cofiltered diagram of nonempty quasi-compact schemes, whose transition maps are affine. Then the limit is also nonempty.

theorem AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty {I : Type u} [CategoryTheory.Category.{u, u} I] (D : CategoryTheory.Functor I Scheme) (c : CategoryTheory.Limits.Cone D) (hc : CategoryTheory.Limits.IsLimit c) [CategoryTheory.IsCofilteredOrEmpty I] [∀ {i j : I} (f : i j), IsAffineHom (D.map f)] (Z : (i : I) → Set (D.obj i)) (hZc : ∀ (i : I), IsClosed (Z i)) (hZne : ∀ (i : I), (Z i).Nonempty) (hZcpt : ∀ (i : I), IsCompact (Z i)) (hmapsTo : ∀ {i i' : I} (f : i i'), Set.MapsTo (⇑(CategoryTheory.ConcreteCategory.hom (D.map f).base)) (Z i) (Z i')) :
∃ (s : c.pt), ∀ (i : I), (CategoryTheory.ConcreteCategory.hom (c.π.app i).base) s Z i

Suppose we have a cofiltered diagram of schemes whose transition maps are affine. The limit of a family of compatible nonempty quasicompact closed sets in the diagram is also nonempty.

theorem AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty' {I : Type u} [CategoryTheory.Category.{u, u} I] (D : CategoryTheory.Functor I Scheme) (c : CategoryTheory.Limits.Cone D) (hc : CategoryTheory.Limits.IsLimit c) [CategoryTheory.IsCofilteredOrEmpty I] [∀ {i j : I} (f : i j), IsAffineHom (D.map f)] {j : I} (Z : (i : I) → (i j) → Set (D.obj i)) (hZc : ∀ (i : I) (hij : i j), IsClosed (Z i hij)) (hZne : ∀ (i : I) (hij : i j), (Z i hij).Nonempty) (hZcpt : ∀ (i : I) (hij : i j), IsCompact (Z i hij)) (hstab : ∀ (i i' : I) (hi'i : i' i) (hij : i j), Set.MapsTo (⇑(CategoryTheory.ConcreteCategory.hom (D.map hi'i).base)) (Z i' (CategoryTheory.CategoryStruct.comp hi'i hij)) (Z i hij)) :
∃ (s : c.pt), ∀ (i : I) (hij : i j), (CategoryTheory.ConcreteCategory.hom (c.π.app i).base) s Z i hij

A variant of exists_mem_of_isClosed_of_nonempty where the closed sets are only defined for the objects over a given j : I.

Cofiltered Limits and Schemes of Finite Type #

Given a cofiltered diagram D of quasi-compact S-schemes with affine transition maps, and another scheme X of finite type over S. Then the canonical map colim Homₛ(Dᵢ, X) ⟶ Homₛ(lim Dᵢ, X) is injective. In other words, for each pair of a : Homₛ(Dᵢ, X) and b : Homₛ(Dⱼ, X) that give rise to the same map Homₛ(lim Dᵢ, X), there exists a k with fᵢ : k ⟶ i and fⱼ : k ⟶ j such that D(fᵢ) ≫ a = D(fⱼ) ≫ b. This results is formalized in Scheme.exists_hom_hom_comp_eq_comp_of_locallyOfFiniteType.

We first reduce to the case i = j, and the goal is to reduce to the case where X and S are affine, where the result follows from commutative algebra.

To achieve this, we show that there exists some i₀ ⟶ i such that for each x, a x and b x are contained in the same component (i.e. given an open cover 𝒰ₛ of S, and 𝒰ₓ of X refining 𝒰ₛ, the range of x ↦ (a x, b x) falls in the diagonal part ⋃ᵢⱼ 𝒰ₓⱼ ×[𝒰ₛᵢ] 𝒰ₓⱼ). Then we may restrict to the sub-diagram over i₀ (which is cofinal because D is cofiltered), and check locally on X, reducing to the affine case.

For the actual implementation, we wrap i, a, b, the limit cone lim Dᵢ, and open covers of X and S into a structure ExistsHomHomCompEqCompAux for convenience.

See the injective part of (1) => (3) of https://stacks.math.columbia.edu/tag/01ZC.

(Implementation) An auxiliary structure used to prove Scheme.exists_hom_hom_comp_eq_comp_of_locallyOfFiniteType. See the section docstring.

Instances For

    (Implementation) The index i' such that a and b restricted onto i' maps into the diagonal components. See the section docstring.

    Equations
    Instances For

      (Implementation) The map from i' to i. See the section docstring.

      Equations
      Instances For

        (Implementation) The map sending x to (a x, b x), which should fall in the diagonal component. See the section docstring.

        Equations
        Instances For

          (Implementation) The covering of D(i') by the pullback of the diagonal components of X ×ₛ X. See the section docstring.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def AlgebraicGeometry.ExistsHomHomCompEqCompAux.𝒰D {I : Type u} [CategoryTheory.Category.{u, u} I] {S X : Scheme} {D : CategoryTheory.Functor I Scheme} {t : D (CategoryTheory.Functor.const I).obj S} {f : X S} [∀ (i : I), CompactSpace (D.obj i)] [CategoryTheory.IsCofiltered I] [∀ {i j : I} (f : i j), IsAffineHom (D.map f)] (A : ExistsHomHomCompEqCompAux D t f) :

            (Implementation) An affine open cover refining 𝒰D₀. See the section docstring.

            Equations
            Instances For

              (Implementation) The diagram restricted to Over i'. See the section docstring.

              Equations
              Instances For

                (Implementation) The limit cone restricted to Over i'. See the section docstring.

                Equations
                Instances For

                  (Implementation) The limit cone restricted to Over i' is still a limit because the diagram is cofiltered. See the section docstring.

                  Equations
                  Instances For

                    Given a cofiltered diagram D of quasi-compact S-schemes with affine transition maps, and another scheme X of finite type over S. Then the canonical map colim Homₛ(Dᵢ, X) ⟶ Homₛ(lim Dᵢ, X) is injective.

                    In other words, for each pair of a : Homₛ(Dᵢ, X) and b : Homₛ(Dⱼ, X) that give rise to the same map Homₛ(lim Dᵢ, X), there exists a k with fᵢ : k ⟶ i and fⱼ : k ⟶ j such that D(fᵢ) ≫ a = D(fⱼ) ≫ b.