Documentation

Mathlib.RingTheory.KrullDimension.Regular

Krull Dimension of quotient regular sequence #

Main results #

theorem Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] [Module.Finite R M] {x : R} (hn : p(annihilator R M).minimalPrimes, xp) :

If M is a finite module over a commutative ring R, x ∈ M is not in any minimal prime of M, then dim M/xM + 1 ≤ dim M.

If M is a finite module over a Noetherian local ring R, then dim M ≤ dim M/xM + 1 for every x in the maximal ideal of the local ring R.

If M is a finite module over a Noetherian local ring R, r₁, …, rₙ is an M-sequence, then dim M/(r₁, …, rₙ)M + n = dim M.