Krull Dimension of quotient regular sequence #
Main results #
Module.supportDim_add_length_eq_supportDim_of_isRegular: IfMis a finite module over a Noetherian local ringR,r₁, …, rₙis anM-sequence, thendim M/(r₁, …, rₙ)M + n = dim M.
theorem
Module.supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
{x : R}
(h : x ∈ (annihilator R M).jacobson)
:
theorem
Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes
{R : Type u_1}
[CommRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
{x : R}
(hn : ∀ p ∈ (annihilator R M).minimalPrimes, x ∉ p)
:
If M is a finite module over a commutative ring R, x ∈ M is not in any minimal prime of
M, then dim M/xM + 1 ≤ dim M.
theorem
Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_jacobson
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
{x : R}
(hn : ∀ p ∈ (annihilator R M).minimalPrimes, x ∉ p)
(hx : x ∈ (annihilator R M).jacobson)
:
theorem
Module.supportDim_quotSMulTop_succ_eq_supportDim_mem_jacobson
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
{x : R}
(reg : IsSMulRegular M x)
(hx : x ∈ (annihilator R M).jacobson)
:
theorem
ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_jacobson
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
{x : R}
(reg : IsSMulRegular R x)
(hx : x ∈ Ring.jacobson R)
:
theorem
Module.supportDim_le_supportDim_quotSMulTop_succ
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
[IsLocalRing R]
{x : R}
(hx : x ∈ IsLocalRing.maximalIdeal R)
:
If M is a finite module over a Noetherian local ring R, then dim M ≤ dim M/xM + 1
for every x in the maximal ideal of the local ring R.
theorem
Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_maximalIdeal
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
[IsLocalRing R]
{x : R}
(hn : ∀ p ∈ (annihilator R M).minimalPrimes, x ∉ p)
(hx : x ∈ IsLocalRing.maximalIdeal R)
:
Stacks Tag 0B52 (the equality case)
theorem
Module.supportDim_quotSMulTop_succ_eq_supportDim
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
[IsLocalRing R]
{x : R}
(reg : IsSMulRegular M x)
(hx : x ∈ IsLocalRing.maximalIdeal R)
:
theorem
ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
{x : R}
(reg : IsSMulRegular R x)
(hx : x ∈ IsLocalRing.maximalIdeal R)
:
theorem
ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_nonZeroDivisors
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
{x : R}
(reg : x ∈ nonZeroDivisors R)
(hx : x ∈ IsLocalRing.maximalIdeal R)
:
theorem
Module.supportDim_add_length_eq_supportDim_of_isRegular
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
[IsLocalRing R]
(rs : List R)
(reg : RingTheory.Sequence.IsRegular M rs)
:
If M is a finite module over a Noetherian local ring R, r₁, …, rₙ is an
M-sequence, then dim M/(r₁, …, rₙ)M + n = dim M.
theorem
ringKrullDim_add_length_eq_ringKrullDim_of_isRegular
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
(rs : List R)
(reg : RingTheory.Sequence.IsRegular R rs)
: