Relative Normalization #
Given a qcqs morphism f : X ⟶ Y, we define the relative normalization f.normalization,
along with the maps that f factor into:
f.toNormalization : X ⟶ f.normalization: a dominant morphismf.fromNormalization : f.normalization ⟶ Y: an integral morphism
TODO #
- show the universal property of relative normalization
Given a morphism f : X ⟶ Y, this is the presheaf of integral closure of Y in X.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The inclusion from the structure presheaf of Y to the integral closure of Y in X.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AlgebraicGeometry.Scheme.Hom.isCompact_preimage
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
{U : Y.Opens}
(hU : IsCompact ↑U)
:
IsCompact ↑((TopologicalSpace.Opens.map f.base).obj U)
theorem
AlgebraicGeometry.Scheme.Hom.isQuasiSeparated_preimage
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiSeparated f]
{U : Y.Opens}
(hU : IsQuasiSeparated ↑U)
:
theorem
AlgebraicGeometry.Scheme.Hom.preservesLocalization_normalizationDiagramMap
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
instance
AlgebraicGeometry.Scheme.Hom.instIsOpenImmersionMapAffineZariskiSiteCompOppositeCommRingCatRightOpOpensOpToOpensFunctorNormalizationDiagramSpec
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
{U V : Y.AffineZariskiSite}
(i : U ⟶ V)
:
def
AlgebraicGeometry.Scheme.Hom.normalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
Given f : X ⟶ Y, f.normalization is the relative normalization of Y in X.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
AlgebraicGeometry.Scheme.Hom.normalizationOpenCover
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
This is the open cover of f.normalization by Spec of integral closures of Γ(Y, U)
in Γ(X, f ⁻¹ U) where U ranges over all affine opens.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
AlgebraicGeometry.Scheme.Hom.toNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
The dominant morphism into the relative normalization.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AlgebraicGeometry.Scheme.Hom.ι_toNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
(U : ↑Y.affineOpens)
:
CategoryTheory.CategoryStruct.comp ((TopologicalSpace.Opens.map f.base).obj ↑U).ι (toNormalization f) = CategoryTheory.CategoryStruct.comp ((TopologicalSpace.Opens.map f.base).obj ↑U).toSpecΓ
(CategoryTheory.CategoryStruct.comp
(Spec.map
(CommRingCat.ofHom
(integralClosure ↑(Y.presheaf.obj (Opposite.op ↑U))
↑(X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map f.base).obj ↑U)))).val.toRingHom))
((normalizationOpenCover f).f U))
theorem
AlgebraicGeometry.Scheme.Hom.ι_toNormalization_assoc
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
(U : ↑Y.affineOpens)
{Z : Scheme}
(h : normalization f ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((TopologicalSpace.Opens.map f.base).obj ↑U).ι
(CategoryTheory.CategoryStruct.comp (toNormalization f) h) = CategoryTheory.CategoryStruct.comp ((TopologicalSpace.Opens.map f.base).obj ↑U).toSpecΓ
(CategoryTheory.CategoryStruct.comp
(Spec.map
(CommRingCat.ofHom
(integralClosure ↑(Y.presheaf.obj (Opposite.op ↑U))
↑(X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map f.base).obj ↑U)))).val.toRingHom))
(CategoryTheory.CategoryStruct.comp ((normalizationOpenCover f).f U) h))
def
AlgebraicGeometry.Scheme.Hom.fromNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
The morphism from the relative normalization to itself. This map is integral.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AlgebraicGeometry.Scheme.Hom.ι_fromNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
(U : ↑Y.affineOpens)
:
theorem
AlgebraicGeometry.Scheme.Hom.ι_fromNormalization_assoc
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
(U : ↑Y.affineOpens)
{Z : Scheme}
(h : Y ⟶ Z)
:
theorem
AlgebraicGeometry.Scheme.Hom.fromNormalization_preimage
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
(U : ↑Y.affineOpens)
:
(TopologicalSpace.Opens.map (fromNormalization f).base).obj ↑U = opensRange ((normalizationOpenCover f).f U)
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.toNormalization_fromNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.toNormalization_fromNormalization_assoc
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
{Z : Scheme}
(h : Y ⟶ Z)
:
instance
AlgebraicGeometry.Scheme.Hom.instIsIntegralHomFromNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
theorem
AlgebraicGeometry.Scheme.Hom.toNormalization_app_preimage
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
(U : ↑Y.affineOpens)
:
let this := (CommRingCat.Hom.hom (app f ↑U)).toAlgebra;
app (toNormalization f) ((TopologicalSpace.Opens.map (fromNormalization f).base).obj ↑U) = CategoryTheory.CategoryStruct.comp ((normalization f).presheaf.map (CategoryTheory.eqToHom ⋯).op)
(CategoryTheory.CategoryStruct.comp (appIso ((normalizationOpenCover f).f U) ⊤).hom
(CategoryTheory.CategoryStruct.comp
(ΓSpecIso
(Opposite.unop (((AffineZariskiSite.toOpensFunctor Y).op.comp (normalizationDiagram f)).rightOp.obj U))).hom
(CategoryTheory.CategoryStruct.comp
(CommRingCat.ofHom
(integralClosure ↑(Y.presheaf.obj (Opposite.op ↑U))
↑(X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map f.base).obj ↑U)))).val.toRingHom)
(X.presheaf.map (CategoryTheory.eqToHom ⋯).op))))
instance
AlgebraicGeometry.Scheme.Hom.instIsIsoToNormalizationOfIsIntegralHom
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
[IsIntegralHom f]
:
instance
AlgebraicGeometry.Scheme.Hom.instIsAffineHomToNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
[IsAffineHom f]
:
instance
AlgebraicGeometry.Scheme.Hom.instQuasiCompactToNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
instance
AlgebraicGeometry.Scheme.Hom.instQuasiSeparatedToNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.ker_toNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
instance
AlgebraicGeometry.Scheme.Hom.instIsDominantToNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
:
instance
AlgebraicGeometry.Scheme.Hom.instIsReducedNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
[IsReduced X]
:
instance
AlgebraicGeometry.Scheme.Hom.instIsIntegralNormalization
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[QuasiSeparated f]
[IsIntegral X]
: