Documentation

Mathlib.AlgebraicGeometry.RationalMap

Rational maps between schemes #

Main definitions #

A partial map from X to Y (X.PartialMap Y) is a morphism into Y defined on a dense open subscheme of X.

  • domain : X.Opens

    The domain of definition of a partial map.

  • dense_domain : Dense self.domain
  • hom : self.domain Y

    The underlying morphism of a partial map.

Instances For
    @[reducible, inline]
    abbrev AlgebraicGeometry.Scheme.PartialMap.IsOver {X Y : Scheme} (S : Scheme) [X.Over S] [Y.Over S] (f : X.PartialMap Y) :

    A partial map is a S-map if the underlying morphism is.

    Equations
    Instances For
      theorem AlgebraicGeometry.Scheme.PartialMap.ext_iff {X Y : Scheme} (f g : X.PartialMap Y) :
      f = g ∃ (e : f.domain = g.domain), f.hom = CategoryTheory.CategoryStruct.comp (X.isoOfEq e).hom g.hom
      theorem AlgebraicGeometry.Scheme.PartialMap.ext {X Y : Scheme} (f g : X.PartialMap Y) (e : f.domain = g.domain) (H : f.hom = CategoryTheory.CategoryStruct.comp (X.isoOfEq e).hom g.hom) :
      f = g
      noncomputable def AlgebraicGeometry.Scheme.PartialMap.restrict {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
      X.PartialMap Y

      The restriction of a partial map to a smaller domain.

      Equations
      Instances For
        @[simp]
        theorem AlgebraicGeometry.Scheme.PartialMap.restrict_hom {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
        (f.restrict U hU hU').hom = CategoryTheory.CategoryStruct.comp (X.homOfLE hU') f.hom
        @[simp]
        theorem AlgebraicGeometry.Scheme.PartialMap.restrict_domain {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
        (f.restrict U hU hU').domain = U
        @[simp]
        theorem AlgebraicGeometry.Scheme.PartialMap.restrict_id {X Y : Scheme} (f : X.PartialMap Y) :
        f.restrict f.domain = f
        theorem AlgebraicGeometry.Scheme.PartialMap.restrict_id_hom {X Y : Scheme} (f : X.PartialMap Y) :
        (f.restrict f.domain ).hom = f.hom
        @[simp]
        theorem AlgebraicGeometry.Scheme.PartialMap.restrict_restrict {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) (V : X.Opens) (hV : Dense V) (hV' : V U) :
        (f.restrict U hU hU').restrict V hV hV' = f.restrict V hV
        theorem AlgebraicGeometry.Scheme.PartialMap.restrict_restrict_hom {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) (V : X.Opens) (hV : Dense V) (hV' : V U) :
        ((f.restrict U hU hU').restrict V hV hV').hom = (f.restrict V hV ).hom
        instance AlgebraicGeometry.Scheme.PartialMap.instIsOverRestrict {X Y S : Scheme} [X.Over S] [Y.Over S] (f : X.PartialMap Y) [IsOver S f] (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
        IsOver S (f.restrict U hU hU')
        def AlgebraicGeometry.Scheme.PartialMap.compHom {X Y Z : Scheme} (f : X.PartialMap Y) (g : Y Z) :
        X.PartialMap Z

        The composition of a partial map and a morphism on the right.

        Equations
        Instances For
          @[simp]
          theorem AlgebraicGeometry.Scheme.PartialMap.compHom_hom {X Y Z : Scheme} (f : X.PartialMap Y) (g : Y Z) :
          (f.compHom g).hom = CategoryTheory.CategoryStruct.comp f.hom g
          @[simp]
          theorem AlgebraicGeometry.Scheme.PartialMap.compHom_domain {X Y Z : Scheme} (f : X.PartialMap Y) (g : Y Z) :
          (f.compHom g).domain = f.domain
          instance AlgebraicGeometry.Scheme.PartialMap.instIsOverCompHomOfIsOver {X Y Z S : Scheme} [X.Over S] [Y.Over S] [Z.Over S] (f : X.PartialMap Y) (g : Y Z) [IsOver S f] [Hom.IsOver g S] :
          IsOver S (f.compHom g)
          def AlgebraicGeometry.Scheme.Hom.toPartialMap {X Y : Scheme} (f : X.Hom Y) :
          X.PartialMap Y

          A scheme morphism as a partial map.

          Equations
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.Hom.toPartialMap_hom {X Y : Scheme} (f : X.Hom Y) :
            f.toPartialMap.hom = CategoryTheory.CategoryStruct.comp X.topIso.hom f
            @[simp]
            theorem AlgebraicGeometry.Scheme.Hom.toPartialMap_domain {X Y : Scheme} (f : X.Hom Y) :
            f.toPartialMap.domain =
            theorem AlgebraicGeometry.Scheme.PartialMap.isOver_iff {X Y S : Scheme} [X.Over S] [Y.Over S] {f : X.PartialMap Y} :
            IsOver S f (f.compHom (Y S)).hom = CategoryTheory.CategoryStruct.comp f.domain (X S)
            theorem AlgebraicGeometry.Scheme.PartialMap.isOver_iff_eq_restrict {X Y S : Scheme} [X.Over S] [Y.Over S] {f : X.PartialMap Y} :
            IsOver S f f.compHom (Y S) = (Hom.toPartialMap (X S)).restrict f.domain
            noncomputable def AlgebraicGeometry.Scheme.PartialMap.fromSpecStalkOfMem {X Y : Scheme} (f : X.PartialMap Y) {x : X.toPresheafedSpace} (hx : x f.domain) :
            Spec (X.presheaf.stalk x) Y

            If x is in the domain of a partial map f, then f restricts to a map from Spec 𝒪_x.

            Equations
            Instances For
              @[reducible, inline]
              noncomputable abbrev AlgebraicGeometry.Scheme.PartialMap.fromFunctionField {X Y : Scheme} [IrreducibleSpace X.toPresheafedSpace] (f : X.PartialMap Y) :
              Spec X.functionField Y

              A partial map restricts to a map from Spec K(X).

              Equations
              • f.fromFunctionField = f.fromSpecStalkOfMem
              Instances For
                theorem AlgebraicGeometry.Scheme.PartialMap.fromSpecStalkOfMem_restrict {X Y : Scheme} (f : X.PartialMap Y) {U : X.Opens} (hU : Dense U) (hU' : U f.domain) {x : X.toPresheafedSpace} (hx : x U) :
                (f.restrict U hU hU').fromSpecStalkOfMem hx = f.fromSpecStalkOfMem
                theorem AlgebraicGeometry.Scheme.PartialMap.fromFunctionField_restrict {X Y : Scheme} (f : X.PartialMap Y) [IrreducibleSpace X.toPresheafedSpace] {U : X.Opens} (hU : Dense U) (hU' : U f.domain) :
                (f.restrict U hU hU').fromFunctionField = f.fromFunctionField
                noncomputable def AlgebraicGeometry.Scheme.PartialMap.ofFromSpecStalk {X Y S : Scheme} (sX : X S) (sY : Y S) [IrreducibleSpace X.toPresheafedSpace] [LocallyOfFiniteType sY] {x : X.toPresheafedSpace} [X.IsGermInjectiveAt x] (φ : Spec (X.presheaf.stalk x) Y) (h : CategoryTheory.CategoryStruct.comp φ sY = CategoryTheory.CategoryStruct.comp (X.fromSpecStalk x) sX) :
                X.PartialMap Y

                Given S-schemes X and Y such that Y is locally of finite type and X is irreducible germ-injective at x (e.g. when X is integral), any S-morphism Spec 𝒪ₓ ⟶ Y spreads out to a partial map from X to Y.

                Equations
                Instances For
                  theorem AlgebraicGeometry.Scheme.PartialMap.ofFromSpecStalk_comp {X Y S : Scheme} (sX : X S) (sY : Y S) [IrreducibleSpace X.toPresheafedSpace] [LocallyOfFiniteType sY] {x : X.toPresheafedSpace} [X.IsGermInjectiveAt x] (φ : Spec (X.presheaf.stalk x) Y) (h : CategoryTheory.CategoryStruct.comp φ sY = CategoryTheory.CategoryStruct.comp (X.fromSpecStalk x) sX) :
                  theorem AlgebraicGeometry.Scheme.PartialMap.mem_domain_ofFromSpecStalk {X Y S : Scheme} (sX : X S) (sY : Y S) [IrreducibleSpace X.toPresheafedSpace] [LocallyOfFiniteType sY] {x : X.toPresheafedSpace} [X.IsGermInjectiveAt x] (φ : Spec (X.presheaf.stalk x) Y) (h : CategoryTheory.CategoryStruct.comp φ sY = CategoryTheory.CategoryStruct.comp (X.fromSpecStalk x) sX) :
                  x (ofFromSpecStalk sX sY φ h).domain
                  theorem AlgebraicGeometry.Scheme.PartialMap.fromSpecStalkOfMem_ofFromSpecStalk {X Y S : Scheme} (sX : X S) (sY : Y S) [IrreducibleSpace X.toPresheafedSpace] [LocallyOfFiniteType sY] {x : X.toPresheafedSpace} [X.IsGermInjectiveAt x] (φ : Spec (X.presheaf.stalk x) Y) (h : CategoryTheory.CategoryStruct.comp φ sY = CategoryTheory.CategoryStruct.comp (X.fromSpecStalk x) sX) :
                  (ofFromSpecStalk sX sY φ h).fromSpecStalkOfMem = φ
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.PartialMap.fromSpecStalkOfMem_compHom {X Y Z : Scheme} (f : X.PartialMap Y) (g : Y Z) (x : X.toPresheafedSpace) (hx : x (f.compHom g).domain) :
                  (f.compHom g).fromSpecStalkOfMem hx = CategoryTheory.CategoryStruct.comp (f.fromSpecStalkOfMem hx) g
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.PartialMap.fromSpecStalkOfMem_toPartialMap {X Y : Scheme} (f : X Y) (x : X.toPresheafedSpace) :
                  (Hom.toPartialMap f).fromSpecStalkOfMem trivial = CategoryTheory.CategoryStruct.comp (X.fromSpecStalk x) f
                  noncomputable def AlgebraicGeometry.Scheme.PartialMap.equiv {X Y : Scheme} (f g : X.PartialMap Y) :

                  Two partial maps are equivalent if they are equal on a dense open subscheme.

                  Equations
                  • f.equiv g = ∃ (W : X.Opens) (hW : Dense W) (hWl : W f.domain) (hWr : W g.domain), (f.restrict W hW hWl).hom = (g.restrict W hW hWr).hom
                  Instances For
                    theorem AlgebraicGeometry.Scheme.PartialMap.restrict_equiv {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
                    (f.restrict U hU hU').equiv f
                    theorem AlgebraicGeometry.Scheme.PartialMap.equiv_of_fromSpecStalkOfMem_eq {X Y : Scheme} [IrreducibleSpace X.toPresheafedSpace] {x : X.toPresheafedSpace} [X.IsGermInjectiveAt x] (f g : X.PartialMap Y) (hxf : x f.domain) (hxg : x g.domain) (H : f.fromSpecStalkOfMem hxf = g.fromSpecStalkOfMem hxg) :
                    f.equiv g
                    theorem AlgebraicGeometry.Scheme.PartialMap.Opens.isDominant_homOfLE {X : Scheme} {U V : X.Opens} (hU : Dense U) (hU' : U V) :
                    IsDominant (X.homOfLE hU')
                    theorem AlgebraicGeometry.Scheme.PartialMap.equiv_iff_of_isSeparated_of_le {X Y S : Scheme} [X.Over S] [Y.Over S] [IsReduced X] [IsSeparated (Y S)] {f g : X.PartialMap Y} [IsOver S f] [IsOver S g] {W : X.Opens} (hW : Dense W) (hWl : W f.domain) (hWr : W g.domain) :
                    f.equiv g (f.restrict W hW hWl).hom = (g.restrict W hW hWr).hom

                    Two partial maps from reduced schemes to separated schemes are equivalent if and only if they are equal on any open dense subset.

                    theorem AlgebraicGeometry.Scheme.PartialMap.equiv_iff_of_isSeparated {X Y S : Scheme} [X.Over S] [Y.Over S] [IsReduced X] [IsSeparated (Y S)] {f g : X.PartialMap Y} [IsOver S f] [IsOver S g] :
                    f.equiv g (f.restrict (f.domain g.domain) ).hom = (g.restrict (f.domain g.domain) ).hom

                    Two partial maps from reduced schemes to separated schemes are equivalent if and only if they are equal on the intersection of the domains.

                    theorem AlgebraicGeometry.Scheme.PartialMap.equiv_iff_of_domain_eq_of_isSeparated {X Y S : Scheme} [X.Over S] [Y.Over S] [IsReduced X] [IsSeparated (Y S)] {f g : X.PartialMap Y} (hfg : f.domain = g.domain) [IsOver S f] [IsOver S g] :
                    f.equiv g f = g

                    Two partial maps from reduced schemes to separated schemes with the same domain are equivalent if and only if they are equal.

                    theorem AlgebraicGeometry.Scheme.PartialMap.equiv_toPartialMap_iff_of_isSeparated {X Y S : Scheme} [X.Over S] [Y.Over S] [IsReduced X] [IsSeparated (Y S)] {f : X.PartialMap Y} {g : X Y} [IsOver S f] [Hom.IsOver g S] :

                    A partial map from a reduced scheme to a separated scheme is equivalent to a morphism if and only if it is equal to the restriction of the morphism.

                    A rational map from X to Y (X ⤏ Y) is an equivalence class of partial maps, where two partial maps are equivalent if they are equal on a dense open subscheme.

                    Equations
                    Instances For

                      The notation for rational maps.

                      Equations
                      Instances For
                        def AlgebraicGeometry.Scheme.PartialMap.toRationalMap {X Y : Scheme} (f : X.PartialMap Y) :
                        X.RationalMap Y

                        A partial map as a rational map.

                        Equations
                        Instances For
                          @[reducible, inline]
                          abbrev AlgebraicGeometry.Scheme.Hom.toRationalMap {X Y : Scheme} (f : X.Hom Y) :
                          X.RationalMap Y

                          A scheme morphism as a rational map.

                          Equations
                          • f.toRationalMap = f.toPartialMap.toRationalMap
                          Instances For
                            class AlgebraicGeometry.Scheme.RationalMap.IsOver {X Y : Scheme} (S : Scheme) [X.Over S] [Y.Over S] (f : X.RationalMap Y) :

                            A rational map is a S-map if some partial map in the equivalence class is a S-map.

                            Instances
                              theorem AlgebraicGeometry.Scheme.RationalMap.exists_rep {X Y : Scheme} (f : X.RationalMap Y) :
                              ∃ (g : X.PartialMap Y), g.toRationalMap = f
                              theorem AlgebraicGeometry.Scheme.PartialMap.toRationalMap_eq_iff {X Y : Scheme} {f g : X.PartialMap Y} :
                              f.toRationalMap = g.toRationalMap f.equiv g
                              @[simp]
                              theorem AlgebraicGeometry.Scheme.PartialMap.restrict_toRationalMap {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
                              (f.restrict U hU hU').toRationalMap = f.toRationalMap
                              instance AlgebraicGeometry.Scheme.instIsOverToRationalMapOfIsOver {X Y S : Scheme} [X.Over S] [Y.Over S] (f : X.PartialMap Y) [PartialMap.IsOver S f] :
                              RationalMap.IsOver S f.toRationalMap
                              theorem AlgebraicGeometry.Scheme.RationalMap.exists_partialMap_over {X Y : Scheme} (S : Scheme) [X.Over S] [Y.Over S] (f : X.RationalMap Y) [IsOver S f] :
                              ∃ (g : X.PartialMap Y), PartialMap.IsOver S g g.toRationalMap = f
                              def AlgebraicGeometry.Scheme.RationalMap.compHom {X Y Z : Scheme} (f : X.RationalMap Y) (g : Y Z) :
                              X.RationalMap Z

                              The composition of a rational map and a morphism on the right.

                              Equations
                              • f.compHom g = Quotient.map (fun (x : X.PartialMap Y) => x.compHom g) f
                              Instances For
                                @[simp]
                                theorem AlgebraicGeometry.Scheme.RationalMap.compHom_toRationalMap {X Y Z : Scheme} (f : X.PartialMap Y) (g : Y Z) :
                                (f.compHom g).toRationalMap = f.toRationalMap.compHom g
                                instance AlgebraicGeometry.Scheme.instIsOverCompHomOfIsOver {X Y Z S : Scheme} [X.Over S] [Y.Over S] [Z.Over S] (f : X.RationalMap Y) (g : Y Z) [RationalMap.IsOver S f] [Hom.IsOver g S] :
                                RationalMap.IsOver S (f.compHom g)
                                theorem AlgebraicGeometry.Scheme.PartialMap.exists_restrict_isOver {X Y : Scheme} (S : Scheme) [X.Over S] [Y.Over S] (f : X.PartialMap Y) [RationalMap.IsOver S f.toRationalMap] :
                                ∃ (U : X.Opens) (hU : Dense U) (hU' : U f.domain), IsOver S (f.restrict U hU hU')
                                theorem AlgebraicGeometry.Scheme.RationalMap.isOver_iff {X Y S : Scheme} [X.Over S] [Y.Over S] {f : X.RationalMap Y} :
                                IsOver S f f.compHom (Y S) = Hom.toRationalMap (X S)
                                theorem AlgebraicGeometry.Scheme.PartialMap.isOver_toRationalMap_iff_of_isSeparated {X Y S : Scheme} [X.Over S] [Y.Over S] [IsReduced X] [S.IsSeparated] {f : X.PartialMap Y} :
                                RationalMap.IsOver S f.toRationalMap IsOver S f
                                noncomputable def AlgebraicGeometry.Scheme.RationalMap.fromFunctionField {X Y : Scheme} [IrreducibleSpace X.toPresheafedSpace] (f : X.RationalMap Y) :
                                Spec X.functionField Y

                                A rational map restricts to a map from Spec K(X).

                                Equations
                                Instances For
                                  @[simp]
                                  theorem AlgebraicGeometry.Scheme.RationalMap.fromFunctionField_toRationalMap {X Y : Scheme} [IrreducibleSpace X.toPresheafedSpace] (f : X.PartialMap Y) :
                                  f.toRationalMap.fromFunctionField = f.fromFunctionField
                                  noncomputable def AlgebraicGeometry.Scheme.RationalMap.ofFunctionField {X Y S : Scheme} (sX : X S) (sY : Y S) [IsIntegral X] [LocallyOfFiniteType sY] (f : Spec X.functionField Y) (h : CategoryTheory.CategoryStruct.comp f sY = CategoryTheory.CategoryStruct.comp (X.fromSpecStalk (genericPoint X.toPresheafedSpace)) sX) :
                                  X.RationalMap Y

                                  Given S-schemes X and Y such that Y is locally of finite type and X is integral, any S-morphism Spec K(X) ⟶ Y spreads out to a rational map from X to Y.

                                  Equations
                                  Instances For
                                    theorem AlgebraicGeometry.Scheme.RationalMap.fromFunctionField_ofFunctionField {X Y S : Scheme} (sX : X S) (sY : Y S) [IsIntegral X] [LocallyOfFiniteType sY] (f : Spec X.functionField Y) (h : CategoryTheory.CategoryStruct.comp f sY = CategoryTheory.CategoryStruct.comp (X.fromSpecStalk (genericPoint X.toPresheafedSpace)) sX) :
                                    (ofFunctionField sX sY f h).fromFunctionField = f
                                    theorem AlgebraicGeometry.Scheme.RationalMap.eq_of_fromFunctionField_eq {X Y : Scheme} [IsIntegral X] (f g : X.RationalMap Y) (H : f.fromFunctionField = g.fromFunctionField) :
                                    f = g
                                    noncomputable def AlgebraicGeometry.Scheme.RationalMap.equivFunctionField {X Y S : Scheme} (sX : X S) (sY : Y S) [IsIntegral X] [LocallyOfFiniteType sY] :
                                    { f : Spec X.functionField Y // CategoryTheory.CategoryStruct.comp f sY = CategoryTheory.CategoryStruct.comp (X.fromSpecStalk (genericPoint X.toPresheafedSpace)) sX } { f : X.RationalMap Y // f.compHom sY = Hom.toRationalMap sX }

                                    Given S-schemes X and Y such that Y is locally of finite type and X is integral, S-morphisms Spec K(X) ⟶ Y correspond bijectively to S-rational maps from X to Y.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      noncomputable def AlgebraicGeometry.Scheme.RationalMap.equivFunctionFieldOver {X Y S : Scheme} [X.Over S] [Y.Over S] [IsIntegral X] [LocallyOfFiniteType (Y S)] :
                                      { f : Spec X.functionField Y // Hom.IsOver f S } { f : X.RationalMap Y // IsOver S f }

                                      Given S-schemes X and Y such that Y is locally of finite type and X is integral, S-morphisms Spec K(X) ⟶ Y correspond bijectively to S-rational maps from X to Y.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        def AlgebraicGeometry.Scheme.RationalMap.domain {X Y : Scheme} (f : X.RationalMap Y) :
                                        X.Opens

                                        The domain of definition of a rational map.

                                        Equations
                                        • f.domain = sSup {x : X.Opens | ∃ (g : X.PartialMap Y) (_ : g.toRationalMap = f), g.domain = x}
                                        Instances For
                                          theorem AlgebraicGeometry.Scheme.PartialMap.le_domain_toRationalMap {X Y : Scheme} (f : X.PartialMap Y) :
                                          f.domain f.toRationalMap.domain
                                          theorem AlgebraicGeometry.Scheme.RationalMap.mem_domain {X Y : Scheme} {f : X.RationalMap Y} {x : X.toPresheafedSpace} :
                                          x f.domain ∃ (g : X.PartialMap Y), x g.domain g.toRationalMap = f
                                          theorem AlgebraicGeometry.Scheme.RationalMap.dense_domain {X Y : Scheme} (f : X.RationalMap Y) :
                                          Dense f.domain
                                          noncomputable def AlgebraicGeometry.Scheme.RationalMap.openCoverDomain {X Y : Scheme} (f : X.RationalMap Y) :
                                          (↑f.domain).OpenCover

                                          The open cover of the domain of f : X ⤏ Y, consisting of all the domains of the partial maps in the equivalence class.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            noncomputable def AlgebraicGeometry.Scheme.RationalMap.toPartialMap {X Y : Scheme} [IsReduced X] [Y.IsSeparated] (f : X.RationalMap Y) :
                                            X.PartialMap Y

                                            If f : X ⤏ Y is a rational map from a reduced scheme to a separated scheme, then f can be represented as a partial map on its domain of definition.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              theorem AlgebraicGeometry.Scheme.PartialMap.toPartialMap_toRationalMap_restrict {X Y : Scheme} [IsReduced X] [Y.IsSeparated] (f : X.PartialMap Y) :
                                              (f.toRationalMap.toPartialMap.restrict f.domain ).hom = f.hom
                                              @[simp]
                                              theorem AlgebraicGeometry.Scheme.RationalMap.toRationalMap_toPartialMap {X Y : Scheme} [IsReduced X] [Y.IsSeparated] (f : X.RationalMap Y) :
                                              f.toPartialMap.toRationalMap = f
                                              instance AlgebraicGeometry.Scheme.instIsOverToPartialMapOfIsSeparatedOfIsOver {X Y S : Scheme} [IsReduced X] [Y.IsSeparated] [S.IsSeparated] [X.Over S] [Y.Over S] (f : X.RationalMap Y) [RationalMap.IsOver S f] :
                                              PartialMap.IsOver S f.toPartialMap