Documentation

Mathlib.RingTheory.Etale.QuasiFinite

Etale local structure of finite maps #

We construct etale neighborhoods that split fibers of finite algebras.

Main results #

noncomputable def Ideal.fiberIsoOfBijectiveResidueField {R : Type u_1} {R' : Type u_2} {S : Type u_3} [CommRing R] [CommRing R'] [CommRing S] [Algebra R R'] [Algebra R S] {p : Ideal R} {q : Ideal R'} [p.IsPrime] [q.IsPrime] [q.LiesOver p] (H : Function.Bijective (ResidueField.mapₐ p q (Algebra.ofId R R') )) :
(q.primesOver (TensorProduct R R' S)) ≃o (p.primesOver S)

If q is a prime of R' lying over p, a prime of R, such that κ(q) = κ(p), then the fiber of R' → R' ⊗[R] S over q is in bijection with the fiber of R → S over p.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Ideal.comap_fiberIsoOfBijectiveResidueField_apply {R : Type u_1} {R' : Type u_2} {S : Type u_3} [CommRing R] [CommRing R'] [CommRing S] [Algebra R R'] [Algebra R S] {p : Ideal R} {q : Ideal R'} [p.IsPrime] [q.IsPrime] [q.LiesOver p] (H : Function.Bijective (ResidueField.mapₐ p q (Algebra.ofId R R') )) (Q : (q.primesOver (TensorProduct R R' S))) :
    theorem Ideal.eq_of_comap_eq_comap_of_bijective_residueFieldMap {R : Type u_1} {R' : Type u_2} {S : Type u_3} [CommRing R] [CommRing R'] [CommRing S] [Algebra R R'] [Algebra R S] {p : Ideal R} {q : Ideal R'} [p.IsPrime] [q.IsPrime] [q.LiesOver p] (H : Function.Bijective (ResidueField.mapₐ p q (Algebra.ofId R R') )) (P₁ P₂ : Ideal (TensorProduct R R' S)) [P₁.IsPrime] [P₂.IsPrime] [P₁.LiesOver q] [P₂.LiesOver q] (H₂ : comap Algebra.TensorProduct.includeRight.toRingHom P₁ = comap Algebra.TensorProduct.includeRight.toRingHom P₂) :
    P₁ = P₂
    theorem Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] [Module.Finite R S] (p : Ideal R) [p.IsPrime] (q : Ideal S) [q.IsPrime] [q.LiesOver p] :
    ∃ (R' : Type u) (x : CommRing R') (x_1 : Algebra R R') (_ : Etale R R') (P : Ideal R') (x_3 : P.IsPrime) (x_4 : P.LiesOver p) (e : TensorProduct R R' S) (_ : IsIdempotentElem e) (P' : Ideal (TensorProduct R R' S)) (_ : P'.IsPrime) (_ : P'.LiesOver P), Ideal.comap TensorProduct.includeRight.toRingHom P' = q eP' Function.Bijective (Ideal.ResidueField.mapₐ p P (ofId R R') ) ∀ (P'' : Ideal (TensorProduct R R' S)), P''.IsPrimeP''.LiesOver PeP''P'' = P'

    Let S be a module-finite R-algebra, and q a prime lying over p. We may construct an etale R-algebra R' and a prime P lying over p with κ(P) = κ(p), such that R' ⊗[R] S = A × B and there exists a unique prime in A lying over P. This prime will also lie over q.

    The actual lemma is stated in terms of the idempotent element e = (1, 0).