Documentation

Mathlib.RingTheory.ZariskisMainTheorem

Algebraic Zariski's Main Theorem #

The statement of Zariski's main theorem is the following: Given a finite type R-algebra S, and p a prime of S such that S is quasi-finite at R, then there exists a f ∉ p such that S[1/f] is isomorphic to R'[1/f] where R' is the integral closure of R in S.

We follow https://stacks.math.columbia.edu/tag/00PI and proceed in the following steps

  1. Algebra.ZariskisMainProperty.of_adjoin_eq_top: The case where S = R[X]/I. The key is Polynomial.not_ker_le_map_C_of_surjective_of_quasiFiniteAt which shows that there exists some g ∈ I such that some coefficient gᵢ ∉ p. Then one basically takes f = gᵢ and g becomes monic in R[1/gᵢ][X] up to some minor technical issues, and then S[1/gᵢ] is basically integral over R[1/gᵢ].
  2. Algebra.ZariskisMainProperty.of_algHom_polynomial: The case where S is finite over R⟨x⟩ for some x : S. The following key results are first esablished:
  1. Algebra.ZariskisMainProperty.of_algHom_mvPolynomial: The case where S is finite over R⟨x₁,...,xₙ⟩. This is proved using induction on n.

Main definiton and results #

def Algebra.ZariskisMainProperty (R : Type u_1) {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal S) :

We say that an R algebra S satisfies the Zariski's main property at a prime p of S if there exists r ∉ p in the integral closure S' of R in S, such that S'[1/r] = S[1/r].

Equations
Instances For
    theorem Algebra.zariskisMainProperty_iff {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {p : Ideal S} :
    ZariskisMainProperty R p rp, IsIntegral R r ∀ (x : S), ∃ (m : ), IsIntegral R (r ^ m * x)
    theorem Algebra.zariskisMainProperty_iff' {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {p : Ideal S} :
    ZariskisMainProperty R p rp, ∀ (x : S), ∃ (m : ), IsIntegral R (r ^ m * x)
    theorem Algebra.ZariskisMainProperty.trans {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [Algebra R S] [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (p : Ideal T) [p.IsPrime] (h₁ : ZariskisMainProperty R (Ideal.under S p)) (h₂ : rIdeal.under S p, .saturation (Submonoid.powers ((algebraMap S T) r)) = ) :
    theorem isIntegral_of_isIntegralElem_of_monic_of_natDegree_lt {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (φ : Polynomial R →ₐ[R] S) (t : S) (p r : Polynomial R) (ht : φ.IsIntegralElem t) (hpm : p.Monic) (hpr : r.natDegree < p.natDegree) (hp : φ p * t = φ r) :

    Given a map φ : R[X] →ₐ[R] S. Suppose t = φ r / φ p is integral over R[X] where p is monic with deg p > deg r, then t is also integral over R.

    theorem exists_isIntegral_sub_of_isIntegralElem_of_mul_mem_range {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (φ : Polynomial R →ₐ[R] S) (t : S) (p : Polynomial R) (ht : φ.IsIntegralElem t) (hpm : p.Monic) (hp : φ p * t φ.range) :
    ∃ (q : Polynomial R), IsIntegral R (t - φ q)

    Stacks Tag 00PT

    theorem exists_isIntegral_leadingCoeff_pow_smul_sub_of_isIntegralElem_of_mul_mem_range {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (φ : Polynomial R →ₐ[R] S) (t : S) (p : Polynomial R) (ht : φ.IsIntegralElem t) (hp : φ p * t φ.range) :
    ∃ (q : Polynomial R) (n : ), IsIntegral R (p.leadingCoeff ^ n t - φ q)

    Stacks Tag 00PV

    theorem exists_leadingCoeff_pow_smul_mem_conductor {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (φ : Polynomial R →ₐ[R] S) (t : S) (p : Polynomial R) (hRS : integralClosure R S = ) ( : φ.Finite) (hp : φ p * t conductor R (φ Polynomial.X)) :
    ∃ (n : ), p.leadingCoeff ^ n t conductor R (φ Polynomial.X)

    Stacks Tag 00PX

    theorem exists_leadingCoeff_pow_smul_mem_radical_conductor {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (φ : Polynomial R →ₐ[R] S) (t : S) (p : Polynomial R) (hRS : integralClosure R S = ) ( : φ.Finite) (hp : φ p * t (conductor R (φ Polynomial.X)).radical) (i : ) :

    Stacks Tag 00PY

    The algebraic version of Zariski's Main Theorem: Given a finite type R-algebra S that is quasi-finite at a prime p, there exists a f ∉ p such that S[1/f] is isomorphic to R'[1/f] where R' is the integral closure of R in S.