Algebraic Zariski's Main Theorem #
In this file we will prove (TODO @erdOne) the algebraic version of Zariski's main theorem
The final statement would be
example {R S : Type*} [CommRing R] [CommRing S] [Algebra R S] [Algebra.FiniteType R S]
(p : Ideal S) [p.IsPrime] [Algebra.QuasiFiniteAt R p] : ZariskiMainProperty R p
References #
def
Algebra.ZariskisMainProperty
(R : Type u_1)
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(p : Ideal S)
:
We say that an R algebra S satisfies the Zariski's main property at a prime p of S
if there exists r ∉ p in the integral closure S' of R in S, such that S'[1/r] = S[1/r].
Equations
- Algebra.ZariskisMainProperty R p = ∃ (r : ↥(integralClosure R S)), ↑r ∉ p ∧ Function.Bijective ⇑(Localization.awayMap (integralClosure R S).val.toRingHom r)
Instances For
theorem
Algebra.zariskisMainProperty_iff_exists_saturation_eq_top
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Ideal S}
:
ZariskisMainProperty R p ↔ ∃ r ∉ p, ∃ (h : IsIntegral R r), (integralClosure R S).saturation (Submonoid.powers r) ⋯ = ⊤
theorem
Algebra.ZariskisMainProperty.restrictScalars
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
[Algebra.IsIntegral R S]
{p : Ideal T}
(H : ZariskisMainProperty S p)
:
theorem
Algebra.ZariskisMainProperty.trans
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
(p : Ideal T)
[p.IsPrime]
(h₁ : ZariskisMainProperty R (Ideal.under S p))
(h₂ : ∃ r ∉ Ideal.under S p, ⊥.saturation (Submonoid.powers ((algebraMap S T) r)) ⋯ = ⊤)
:
theorem
Algebra.ZariskisMainProperty.of_isIntegral
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(p : Ideal S)
[p.IsPrime]
[Algebra.IsIntegral R S]
: