Standard etale maps #
Main definitions #
StandardEtalePair: A pairf g : R[X]such thatfis monic andf'is invertible inR[X][1/g].StandardEtalePair: The standard etale algebra corresponding to aStandardEtalePair.StandardEtalePair.equivPolynomialQuotient:P.Ring ≃ R[X][Y]/⟨f, Yg-1⟩StandardEtalePair.equivAwayAdjoinRoot:P.Ring ≃ (R[X]/f)[1/g]StandardEtalePair.equivAwayQuotient:P.Ring ≃ R[X][1/g]/fStandardEtalePair.equivMvPolynomialQuotient:P.Ring ≃ R[X, Y]/⟨f, Yg-1⟩StandardEtalePair.homEquiv: Maps out ofP.Ringcorresponds toxsuch thatf(x) = 0andg(x)is invertible.We also provide the instance that
P.Ringis etale overR.Algebra.IsStandardEtale: The class of standard etale algebras.
A StandardEtalePair R is a pair f g : R[X] such that f is monic,
and f' is invertible in R[X][1/g]/f.
- f : Polynomial R
The monic polynomial to be quotiented out in a standard etale algebra.
- g : Polynomial R
The polynomial to be localized away from in a standard etale algebra.
- cond : ∃ (p₁ : Polynomial R) (p₂ : Polynomial R) (n : ℕ), Polynomial.derivative self.f * p₁ + self.f * p₂ = self.g ^ n
Instances For
The standard etale algebra R[X][Y]/⟨f, Yg-1⟩ associated to a StandardEtalePair R.
Also see
equivPolynomialQuotient : P.Ring ≃ R[X][Y]/⟨f, Yg-1⟩
equivAwayAdjoinRoot : P.Ring ≃ (R[X]/f)[1/g]
equivAwayQuotient : P.Ring ≃ R[X][1/g]/f
equivMvPolynomialQuotient : P.Ring ≃ R[X, Y]/⟨f, Yg-1⟩
Equations
- P.Ring = (Polynomial (Polynomial R) ⧸ Ideal.span {Polynomial.C P.f, Polynomial.X * Polynomial.C P.g - 1})
Instances For
Equations
Equations
The X in the standard etale algebra R[X][Y]/⟨f, Yg-1⟩.
Equations
- P.X = (Ideal.Quotient.mk (Ideal.span {Polynomial.C P.f, Polynomial.X * Polynomial.C P.g - 1})) (Polynomial.C Polynomial.X)
Instances For
There is a map from a standard etale algebra R[X][Y]/⟨f, Yg-1⟩ to S sending X to x iff
f(x) = 0 and g(x) is invertible. Also see StandardEtalePair.homEquiv.
Equations
- P.HasMap x = ((Polynomial.aeval x) P.f = 0 ∧ IsUnit ((Polynomial.aeval x) P.g))
Instances For
The map R[X][Y]/⟨f, Yg-1⟩ →ₐ[R] S sending X to x, given P.HasMap x.
Equations
- P.lift x h = Ideal.Quotient.liftₐ (Ideal.span {Polynomial.C P.f, Polynomial.X * Polynomial.C P.g - 1}) (Polynomial.aevalAeval x ↑⋯.unit⁻¹) ⋯
Instances For
Maps out of R[X][Y]/⟨f, Yg-1⟩ corresponds bijectively with
x such that f(x) = 0 and g(x) is invertible.
Equations
Instances For
An AlgEquiv between P.Ring and R[X][Y]/⟨f, Yg-1⟩,
to not abuse the defeq between the two.
Equations
Instances For
R[X][Y]/⟨f, Yg-1⟩ ≃ (R[X]/f)[1/g]
Equations
- P.equivAwayAdjoinRoot = AlgEquiv.ofAlgHom (P.lift ((algebraMap (AdjoinRoot P.f) (Localization.Away ((AdjoinRoot.mk P.f) P.g))) (AdjoinRoot.root P.f)) ⋯) (IsLocalization.liftAlgHom ⋯) ⋯ ⋯
Instances For
R[X][Y]/⟨f, Yg-1⟩ ≃ R[X][1/g]/f
Equations
- One or more equations did not get rendered due to their size.
Instances For
R[X][Y]/⟨f, Yg-1⟩ ≃ R[X, Y]/⟨f, Yg-1⟩
Equations
- One or more equations did not get rendered due to their size.
Instances For
An isomorphism to the standard etale algebra of a standard etale pair.
- f : Polynomial R
- g : Polynomial R
- cond : ∃ (p₁ : Polynomial R) (p₂ : Polynomial R) (n : ℕ), Polynomial.derivative self.f * p₁ + self.f * p₂ = self.g ^ n
- x : S
The image of X in a
StandardEtalePresentation. - lift_bijective : Function.Bijective ⇑(self.lift self.x ⋯)
Instances For
The isomorphism to the standard etale algebra given a StandardEtalePresentation.
Instances For
The Algebra.Presentation associated to a standard etale presentation.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The Algebra.SubmersivePresentation associated to a standard etale presentation.
Equations
- P.toSubmersivePresentation = { toPresentation := P.toPresentation, map := id, map_inj := StandardEtalePresentation.toSubmersivePresentation._proof_2, jacobian_isUnit := ⋯ }
Instances For
Mapping StandardEtalePresentation under AlgEquivs.
Instances For
The class of standard etale algebras,
defined to be the existence of a StandardEtalePresentation.
- nonempty_standardEtalePresentation : Nonempty (StandardEtalePresentation R S)
Instances
If T is an etale algebra, and a standard etale algebra surjects onto T, then
T is also standard etale.