Flat and smooth fibers imply smooth #
Main results #
Algebra.FormallySmooth.of_formallySmooth_residueField_tensor: Let(R, m, k)be a local ring,Sbe a localR-algebra that is flat, essentially of finite presentation, andk ⊗[R] Sisk-formally smooth. ThenSisR-formally smooth.Algebra.mem_smoothLocus_of_formallySmooth_fiber: LetSbe a flat and finitely presentedR-algebra, andqbe a prime ofSlying overp. Ifκ(p) ⊗[R] Sisκ(p)-smooth, thenSis smooth atq.Algebra.Smooth.of_formallySmooth_fiber: Flat and finitely presented and smooth fibers imply smooth.Algebra.Etale.of_formallyUnramified_of_flat: Flat and finitely presented and (formally) unramified implies etale.
Note #
For the converse that smooth imples flat, see Mathlib/RingTheory/Smooth/Flat.lean.
theorem
Algebra.FormallySmooth.of_formallySmooth_residueField_tensor
{R : Type u_1}
{S : Type u_2}
{P : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
[Module.Flat R S]
[CommRing P]
[Algebra R P]
[Algebra P S]
[IsScalarTower R P S]
[IsLocalRing R]
[IsLocalRing S]
[IsLocalHom (algebraMap R S)]
[FormallySmooth (IsLocalRing.ResidueField R) (TensorProduct R (IsLocalRing.ResidueField R) S)]
(M : Submonoid P)
[IsLocalization M S]
[FinitePresentation R P]
:
FormallySmooth R S
Let (R, m, k) be a local ring, S be a local R-algebra that is flat,
essentially of finite presentation, and k ⊗[R] S is k-formally smooth.
Then S is R-formally smooth.
Since we don't have an "essentially of finite presentation" type class yet, we explicitly require a
P that is of finite presentation over R and that S is a localization of it.
theorem
Algebra.IsSmoothAt.of_formallySmooth_fiber
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[Module.Flat R S]
[FinitePresentation R S]
(p : Ideal R)
(q : Ideal S)
[p.IsPrime]
[q.IsPrime]
[q.LiesOver p]
[FormallySmooth p.ResidueField (p.Fiber S)]
:
IsSmoothAt R q
Stacks Tag 00TF (We require the whole fiber to be smooth instead)
theorem
Algebra.Smooth.of_formallySmooth_fiber
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[Module.Flat R S]
[FinitePresentation R S]
(H : ∀ (I : Ideal R) [inst : I.IsPrime], FormallySmooth I.ResidueField (I.Fiber S))
:
Smooth R S
theorem
Algebra.Etale.of_formallyUnramified_of_flat
{R : Type u_4}
{S : Type u_5}
[CommRing R]
[CommRing S]
[Algebra R S]
[FinitePresentation R S]
[Module.Flat R S]
[FormallyUnramified R S]
:
Etale R S
Stacks Tag 08WD ((3) => (1))
theorem
Algebra.IsEtaleAt.of_isUnramifiedAt_of_flat
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[Module.Flat R S]
[FinitePresentation R S]
(q : Ideal S)
[q.IsPrime]
[IsUnramifiedAt R q]
:
IsEtaleAt R q