Local structure of unramified algebras #
In this file, we will prove that if S is a finite type R-algebra unramified at Q, then
there exists f ∉ Q and a standard etale algebra A over R that surjects onto S[1/f].
Geometrically, this says that unramified morphisms locally are closed subsets of etale covers.
Main definition and results #
HasStandardEtaleSurjectionOn: The predicate "there exists a standard etale algebraAoverRthat surjects ontoS[1/f]".Algebra.IsUnramified.exist_HasStandardEtaleSurjectionOn_of_exists_adjoin_singleton_eq_top: The claim is true whenShas the formR[X]/Iand is finite overR.
TODO (@erdOne) #
- Extend the result to arbitrary finite algebras.
- Extend the result to arbitrary finite-type algebras (needs Zariski's main theorem).
def
HasStandardEtaleSurjectionOn
(R : Type u_1)
{S : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
(f : S)
:
The predicate "there exists a standard etale algebra A over R that surjects onto S[1/f]".
We shall show if S is R-unramified at Q then there exists f ∉ Q satisfying it.
Equations
- HasStandardEtaleSurjectionOn R f = ∃ (P : StandardEtalePair R) (φ : P.Ring →ₐ[R] Localization.Away f), Function.Surjective ⇑φ
Instances For
theorem
HasStandardEtaleSurjectionOn.mk
{R : Type u_1}
{A : Type u_2}
{S : Type u_3}
[CommRing R]
[CommRing A]
[CommRing S]
[Algebra R S]
[Algebra R A]
[Algebra.IsStandardEtale R A]
{Sf : Type u_4}
[CommRing Sf]
[Algebra R Sf]
[Algebra S Sf]
[IsScalarTower R S Sf]
{f : S}
[IsLocalization.Away f Sf]
(φ : A →ₐ[R] Sf)
(H : Function.Surjective ⇑φ)
:
theorem
HasStandardEtaleSurjectionOn.of_dvd
{R : Type u_1}
{S : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
{f g : S}
(H : HasStandardEtaleSurjectionOn R f)
(h : f ∣ g)
:
theorem
HasStandardEtaleSurjectionOn.isStandardEtale
{R : Type u_1}
{S : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
{f : S}
(H : HasStandardEtaleSurjectionOn R f)
[Algebra.Etale R (Localization.Away f)]
:
theorem
Algebra.IsUnramifiedAt.exists_hasStandardEtaleSurjectionOn_of_exists_adjoin_singleton_eq_top
{R : Type u_1}
{S : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
[Module.Finite R S]
(H : ∃ (x : S), adjoin R {x} = ⊤)
(Q : Ideal S)
[Q.IsPrime]
[IsUnramifiedAt R Q]
:
∃ f ∉ Q, HasStandardEtaleSurjectionOn R f