Recurrence Lemmas for the continuants Function of Continued Fractions. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Summary #
Given a generalized continued fraction g, for all n ≥ 1, we prove that the continuants
function indeed satisfies the following recurrences:
Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂, andBₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂.
theorem
generalized_continued_fraction.continuants_aux_recurrence
{K : Type u_1}
{g : generalized_continued_fraction K}
{n : ℕ}
[division_ring K]
{gp ppred pred : generalized_continued_fraction.pair K}
(nth_s_eq : g.s.nth n = option.some gp)
(nth_conts_aux_eq : g.continuants_aux n = ppred)
(succ_nth_conts_aux_eq : g.continuants_aux (n + 1) = pred) :
theorem
generalized_continued_fraction.continuants_recurrence_aux
{K : Type u_1}
{g : generalized_continued_fraction K}
{n : ℕ}
[division_ring K]
{gp ppred pred : generalized_continued_fraction.pair K}
(nth_s_eq : g.s.nth n = option.some gp)
(nth_conts_aux_eq : g.continuants_aux n = ppred)
(succ_nth_conts_aux_eq : g.continuants_aux (n + 1) = pred) :
theorem
generalized_continued_fraction.continuants_recurrence
{K : Type u_1}
{g : generalized_continued_fraction K}
{n : ℕ}
[division_ring K]
{gp ppred pred : generalized_continued_fraction.pair K}
(succ_nth_s_eq : g.s.nth (n + 1) = option.some gp)
(nth_conts_eq : g.continuants n = ppred)
(succ_nth_conts_eq : g.continuants (n + 1) = pred) :
Shows that Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂ and Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂.
theorem
generalized_continued_fraction.numerators_recurrence
{K : Type u_1}
{g : generalized_continued_fraction K}
{n : ℕ}
[division_ring K]
{gp : generalized_continued_fraction.pair K}
{ppredA predA : K}
(succ_nth_s_eq : g.s.nth (n + 1) = option.some gp)
(nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
Shows that Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂.
theorem
generalized_continued_fraction.denominators_recurrence
{K : Type u_1}
{g : generalized_continued_fraction K}
{n : ℕ}
[division_ring K]
{gp : generalized_continued_fraction.pair K}
{ppredB predB : K}
(succ_nth_s_eq : g.s.nth (n + 1) = option.some gp)
(nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
Shows that Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂.