Basic results about setwise gcds on normalized gcd monoid with a division. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Main results #
finset.nat.gcd_div_eq_one: given a nonempty finsetsand a functionffromstoℕ, ifd = s.gcd, then thegcdof(f i) / dequals1.finset.int.gcd_div_eq_one: given a nonempty finsetsand a functionffromstoℤ, ifd = s.gcd, then thegcdof(f i) / dequals1.finset.polynomial.gcd_div_eq_one: given a nonempty finsetsand a functionffromstoK[X], ifd = s.gcd, then thegcdof(f i) / dequals1.
TODO #
Add a typeclass to state these results uniformly.
theorem
finset.polynomial.gcd_div_eq_one
{K : Type u_1}
[field K]
{β : Type u_2}
{f : β → polynomial K}
(s : finset β)
{x : β}
(hx : x ∈ s)
(hfz : f x ≠ 0) :
Given a nonempty finset s and a function f from s to K[X], if d = s.gcd f,
then the gcd of (f i) / d is equal to 1.
theorem
finset.polynomial.gcd_div_id_eq_one
{K : Type u_1}
[field K]
{s : finset (polynomial K)}
{x : polynomial K}
(hx : x ∈ s)
(hnz : x ≠ 0) :