Colimits of LocallyRingedSpace #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We construct the explicit coproducts and coequalizers of LocallyRingedSpace.
It then follows that LocallyRingedSpace has all colimits, and
forget_to_SheafedSpace preserves them.
The explicit coproduct for F : discrete ι ⥤ LocallyRingedSpace.
The explicit coproduct cofan for F : discrete ι ⥤ LocallyRingedSpace.
Equations
- algebraic_geometry.LocallyRingedSpace.coproduct_cofan F = {X := algebraic_geometry.LocallyRingedSpace.coproduct F, ι := {app := λ (j : category_theory.discrete ι), {val := category_theory.limits.colimit.ι (F ⋙ algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace) j, prop := _}, naturality' := _}}
The explicit coproduct cofan constructed in coproduct_cofan is indeed a colimit.
Equations
- algebraic_geometry.LocallyRingedSpace.coproduct_cofan_is_colimit F = {desc := λ (s : category_theory.limits.cocone F), {val := category_theory.limits.colimit.desc (F ⋙ algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace) (algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace.map_cocone s), prop := _}, fac' := _, uniq' := _}
Equations
- algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace.category_theory.limits.preserves_colimits_of_shape J = {preserves_colimit := λ (G : category_theory.discrete J ⥤ algebraic_geometry.LocallyRingedSpace), category_theory.limits.preserves_colimit_of_preserves_colimit_cocone (algebraic_geometry.LocallyRingedSpace.coproduct_cofan_is_colimit G) ((category_theory.limits.colimit.is_colimit (G ⋙ algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace)).of_iso_colimit (category_theory.limits.cocones.ext (category_theory.iso.refl (category_theory.limits.colimit.cocone (G ⋙ algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace)).X) _))}
We roughly follow the construction given in [DG70]. Given a pair f, g : X ⟶ Y of morphisms
of locally ringed spaces, we want to show that the stalk map of
π = coequalizer.π f g (as sheafed space homs) is a local ring hom. It then follows that
coequalizer f g is indeed a locally ringed space, and coequalizer.π f g is a morphism of
locally ringed space.
Given a germ ⟨U, s⟩ of x : coequalizer f g such that π꙳ x : Y is invertible, we ought to show
that ⟨U, s⟩ is invertible. That is, there exists an open set U' ⊆ U containing x such that the
restriction of s onto U' is invertible. This U' is given by π '' V, where V is the
basic open set of π⋆x.
Since f ⁻¹' V = Y.basic_open (f ≫ π)꙳ x = Y.basic_open (g ≫ π)꙳ x = g ⁻¹' V, we have
π ⁻¹' (π '' V) = V (as the underlying set map is merely the set-theoretic coequalizer).
This shows that π '' V is indeed open, and s is invertible on π '' V as the components of π꙳
are local ring homs.
(Implementation). The basic open set of the section π꙳ s.
Equations
- algebraic_geometry.LocallyRingedSpace.has_coequalizer.image_basic_open f g U s = Y.to_RingedSpace.basic_open (show ↥(Y.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op (opposite.unop ((topological_space.opens.map (category_theory.limits.coequalizer.π f.val g.val).base).op.obj (opposite.op U))))), from ⇑((category_theory.limits.coequalizer.π f.val g.val).c.app (opposite.op U)) s)
The coequalizer of two locally ringed space in the category of sheafed spaces is a locally ringed space.
Equations
The explicit coequalizer cofork of locally ringed spaces.
Equations
The cofork constructed in coequalizer_cofork is indeed a colimit cocone.
Equations
- algebraic_geometry.LocallyRingedSpace.coequalizer_cofork_is_colimit f g = category_theory.limits.cofork.is_colimit.mk' (algebraic_geometry.LocallyRingedSpace.coequalizer_cofork f g) (λ (s : category_theory.limits.cofork f g), ⟨{val := category_theory.limits.coequalizer.desc s.π.val _, prop := _}, _⟩)
Equations
- algebraic_geometry.LocallyRingedSpace.preserves_coequalizer = {preserves_colimit := λ (F : category_theory.limits.walking_parallel_pair ⥤ algebraic_geometry.LocallyRingedSpace), category_theory.limits.preserves_colimit_of_iso_diagram algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace (category_theory.limits.diagram_iso_parallel_pair F).symm}