Slope of a differentiable function #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Given a function f : π β E from a nontrivially normed field to a normed space over this field,
dslope f a b is defined as slope f a b = (b - a)β»ΒΉ β’ (f b - f a) for a β  b and as deriv f a
for a = b.
In this file we define dslope and prove some basic lemmas about its continuity and
differentiability.
    
noncomputable
def
dslope
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    (f : π β E)
    (a : π) :
π β E
dslope f a b is defined as slope f a b = (b - a)β»ΒΉ β’ (f b - f a) for a β  b and
deriv f a for a = b.
Equations
- dslope f a = function.update (slope f a) a (deriv f a)
@[simp]
    
theorem
dslope_same
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    (f : π β E)
    (a : π) :
    
theorem
dslope_of_ne
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {a b : π}
    (f : π β E)
    (h : b β  a) :
    
theorem
continuous_linear_map.dslope_comp
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {F : Type u_3}
    [normed_add_comm_group F]
    [normed_space π F]
    (f : E βL[π] F)
    (g : π β E)
    (a b : π)
    (H : a = b β differentiable_at π g a) :
    
theorem
eq_on_dslope_slope
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    (f : π β E)
    (a : π) :
    
theorem
dslope_eventually_eq_slope_of_ne
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {a b : π}
    (f : π β E)
    (h : b β  a) :
    
theorem
dslope_eventually_eq_slope_punctured_nhds
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {a : π}
    (f : π β E) :
@[simp]
    
theorem
sub_smul_dslope
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    (f : π β E)
    (a b : π) :
    
theorem
dslope_sub_smul_of_ne
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {a b : π}
    (f : π β E)
    (h : b β  a) :
    
theorem
eq_on_dslope_sub_smul
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    (f : π β E)
    (a : π) :
    
theorem
dslope_sub_smul
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    [decidable_eq π]
    (f : π β E)
    (a : π) :
@[simp]
    
theorem
continuous_at_dslope_same
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a : π} :
continuous_at (dslope f a) a β differentiable_at π f a
    
theorem
continuous_within_at.of_dslope
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a b : π}
    {s : set π}
    (h : continuous_within_at (dslope f a) s b) :
continuous_within_at f s b
    
theorem
continuous_at.of_dslope
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a b : π}
    (h : continuous_at (dslope f a) b) :
continuous_at f b
    
theorem
continuous_on.of_dslope
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a : π}
    {s : set π}
    (h : continuous_on (dslope f a) s) :
continuous_on f s
    
theorem
continuous_within_at_dslope_of_ne
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a b : π}
    {s : set π}
    (h : b β  a) :
continuous_within_at (dslope f a) s b β continuous_within_at f s b
    
theorem
continuous_at_dslope_of_ne
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a b : π}
    (h : b β  a) :
continuous_at (dslope f a) b β continuous_at f b
    
theorem
continuous_on_dslope
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a : π}
    {s : set π}
    (h : s β nhds a) :
continuous_on (dslope f a) s β continuous_on f s β§ differentiable_at π f a
    
theorem
differentiable_within_at.of_dslope
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a b : π}
    {s : set π}
    (h : differentiable_within_at π (dslope f a) s b) :
differentiable_within_at π f s b
    
theorem
differentiable_at.of_dslope
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a b : π}
    (h : differentiable_at π (dslope f a) b) :
differentiable_at π f b
    
theorem
differentiable_on.of_dslope
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a : π}
    {s : set π}
    (h : differentiable_on π (dslope f a) s) :
differentiable_on π f s
    
theorem
differentiable_within_at_dslope_of_ne
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a b : π}
    {s : set π}
    (h : b β  a) :
differentiable_within_at π (dslope f a) s b β differentiable_within_at π f s b
    
theorem
differentiable_on_dslope_of_nmem
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a : π}
    {s : set π}
    (h : a β s) :
differentiable_on π (dslope f a) s β differentiable_on π f s
    
theorem
differentiable_at_dslope_of_ne
    {π : Type u_1}
    {E : Type u_2}
    [nontrivially_normed_field π]
    [normed_add_comm_group E]
    [normed_space π E]
    {f : π β E}
    {a b : π}
    (h : b β  a) :
differentiable_at π (dslope f a) b β differentiable_at π f b