Derivative and series expansion of real logarithm #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we prove that real.log is infinitely smooth at all nonzero x : ℝ. We also prove
that the series ∑' n : ℕ, x ^ (n + 1) / (n + 1) converges to (-real.log (1 - x)) for all
x : ℝ, |x| < 1.
Tags #
logarithm, derivative
@[simp]
theorem
has_deriv_within_at.log
{f : ℝ → ℝ}
{x f' : ℝ}
{s : set ℝ}
(hf : has_deriv_within_at f f' s x)
(hx : f x ≠ 0) :
has_deriv_within_at (λ (y : ℝ), real.log (f y)) (f' / f x) s x
theorem
has_deriv_at.log
{f : ℝ → ℝ}
{x f' : ℝ}
(hf : has_deriv_at f f' x)
(hx : f x ≠ 0) :
has_deriv_at (λ (y : ℝ), real.log (f y)) (f' / f x) x
theorem
has_strict_deriv_at.log
{f : ℝ → ℝ}
{x f' : ℝ}
(hf : has_strict_deriv_at f f' x)
(hx : f x ≠ 0) :
has_strict_deriv_at (λ (y : ℝ), real.log (f y)) (f' / f x) x
theorem
deriv_within.log
{f : ℝ → ℝ}
{x : ℝ}
{s : set ℝ}
(hf : differentiable_within_at ℝ f s x)
(hx : f x ≠ 0)
(hxs : unique_diff_within_at ℝ s x) :
deriv_within (λ (x : ℝ), real.log (f x)) s x = deriv_within f s x / f x
theorem
has_fderiv_within_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
{s : set E}
(hf : has_fderiv_within_at f f' s x)
(hx : f x ≠ 0) :
has_fderiv_within_at (λ (x : E), real.log (f x)) ((f x)⁻¹ • f') s x
theorem
has_fderiv_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
(hf : has_fderiv_at f f' x)
(hx : f x ≠ 0) :
has_fderiv_at (λ (x : E), real.log (f x)) ((f x)⁻¹ • f') x
theorem
has_strict_fderiv_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
(hf : has_strict_fderiv_at f f' x)
(hx : f x ≠ 0) :
has_strict_fderiv_at (λ (x : E), real.log (f x)) ((f x)⁻¹ • f') x
theorem
differentiable_within_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{s : set E}
(hf : differentiable_within_at ℝ f s x)
(hx : f x ≠ 0) :
differentiable_within_at ℝ (λ (x : E), real.log (f x)) s x
@[simp]
theorem
differentiable_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
(hf : differentiable_at ℝ f x)
(hx : f x ≠ 0) :
differentiable_at ℝ (λ (x : E), real.log (f x)) x
theorem
cont_diff_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{n : ℕ∞}
(hf : cont_diff_at ℝ n f x)
(hx : f x ≠ 0) :
cont_diff_at ℝ n (λ (x : E), real.log (f x)) x
theorem
cont_diff_within_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{s : set E}
{n : ℕ∞}
(hf : cont_diff_within_at ℝ n f s x)
(hx : f x ≠ 0) :
cont_diff_within_at ℝ n (λ (x : E), real.log (f x)) s x
theorem
cont_diff_on.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{s : set E}
{n : ℕ∞}
(hf : cont_diff_on ℝ n f s)
(hs : ∀ (x : E), x ∈ s → f x ≠ 0) :
cont_diff_on ℝ n (λ (x : E), real.log (f x)) s
theorem
differentiable_on.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{s : set E}
(hf : differentiable_on ℝ f s)
(hx : ∀ (x : E), x ∈ s → f x ≠ 0) :
differentiable_on ℝ (λ (x : E), real.log (f x)) s
@[simp]
theorem
differentiable.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
(hf : differentiable ℝ f)
(hx : ∀ (x : E), f x ≠ 0) :
differentiable ℝ (λ (x : E), real.log (f x))
theorem
fderiv_within.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{s : set E}
(hf : differentiable_within_at ℝ f s x)
(hx : f x ≠ 0)
(hxs : unique_diff_within_at ℝ s x) :
fderiv_within ℝ (λ (x : E), real.log (f x)) s x = (f x)⁻¹ • fderiv_within ℝ f s x
@[simp]
theorem
fderiv.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
(hf : differentiable_at ℝ f x)
(hx : f x ≠ 0) :
theorem
real.tendsto_mul_log_one_plus_div_at_top
(t : ℝ) :
filter.tendsto (λ (x : ℝ), x * real.log (1 + t / x)) filter.at_top (nhds t)
The function x * log (1 + t / x) tends to t at +∞.
A crude lemma estimating the difference between log (1-x) and its Taylor series at 0,
where the main point of the bound is that it tends to 0. The goal is to deduce the series
expansion of the logarithm, in has_sum_pow_div_log_of_abs_lt_1.