A coherence tactic for bicategories, and ⊗≫ (composition up to associators) #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We provide a coherence tactic,
which proves that any two 2-morphisms (with the same source and target)
in a bicategory which are built out of associators and unitors
are equal.
We also provide f ⊗≫ g, the bicategorical_comp operation,
which automatically inserts associators and unitors as needed
to make the target of f match the source of g.
This file mainly deals with the type class setup for the coherence tactic. The actual front end
tactic is given in category_theory/monooidal/coherence.lean at the same time as the coherence
tactic for monoidal categories.
A typeclass carrying a choice of lift of a 1-morphism from B to free_bicategory B.
Instances of this typeclass
Instances of other typeclasses for category_theory.bicategory.lift_hom
- category_theory.bicategory.lift_hom.has_sizeof_inst
Equations
Equations
A typeclass carrying a choice of lift of a 2-morphism from B to free_bicategory B.
Instances of this typeclass
- category_theory.bicategory.lift_hom₂_id
- category_theory.bicategory.lift_hom₂_left_unitor_hom
- category_theory.bicategory.lift_hom₂_left_unitor_inv
- category_theory.bicategory.lift_hom₂_right_unitor_hom
- category_theory.bicategory.lift_hom₂_right_unitor_inv
- category_theory.bicategory.lift_hom₂_associator_hom
- category_theory.bicategory.lift_hom₂_associator_inv
- category_theory.bicategory.lift_hom₂_comp
- category_theory.bicategory.lift_hom₂_whisker_left
- category_theory.bicategory.lift_hom₂_whisker_right
Instances of other typeclasses for category_theory.bicategory.lift_hom₂
- category_theory.bicategory.lift_hom₂.has_sizeof_inst
Equations
- hom : f ⟶ g
- is_iso : category_theory.is_iso (category_theory.bicategory.bicategorical_coherence.hom f g) . "apply_instance"
A typeclass carrying a choice of bicategorical structural isomorphism between two objects.
Used by the ⊗≫ bicategorical composition operator, and the coherence tactic.
Instances of this typeclass
- category_theory.bicategory.bicategorical_coherence.refl
- category_theory.bicategory.bicategorical_coherence.whisker_left
- category_theory.bicategory.bicategorical_coherence.whisker_right
- category_theory.bicategory.bicategorical_coherence.tensor_right
- category_theory.bicategory.bicategorical_coherence.tensor_right'
- category_theory.bicategory.bicategorical_coherence.left
- category_theory.bicategory.bicategorical_coherence.left'
- category_theory.bicategory.bicategorical_coherence.right
- category_theory.bicategory.bicategorical_coherence.right'
- category_theory.bicategory.bicategorical_coherence.assoc
- category_theory.bicategory.bicategorical_coherence.assoc'
Instances of other typeclasses for category_theory.bicategory.bicategorical_coherence
- category_theory.bicategory.bicategorical_coherence.has_sizeof_inst
Construct an isomorphism between two objects in a bicategorical category out of unitors and associators.
Compose two morphisms in a bicategorical category, inserting unitors and associators between as necessary.
Equations
Compose two isomorphisms in a bicategorical category, inserting unitors and associators between as necessary.
Auxiliary simp lemma for the coherence tactic:
this move brackets to the left in order to expose a maximal prefix
built out of unitors and associators.