Limit properties relating to the (co)yoneda embedding. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We calculate the colimit of Y ↦ (X ⟶ Y), which is just punit.
(This is used in characterising cofinal functors.)
We also show the (co)yoneda embeddings preserve limits and jointly reflect them.
The colimit cocone over coyoneda.obj X, with cocone point punit.
Equations
- category_theory.coyoneda.colimit_cocone X = {X := punit, ι := {app := λ (X_1 : C), id (λ (ᾰ : (category_theory.coyoneda.obj X).obj X_1), id (λ (X : Cᵒᵖ) (X_1 : C) (ᾰ : opposite.unop X ⟶ X_1), punit.star) X X_1 ᾰ), naturality' := _}}
The proposed colimit cocone over coyoneda.obj X is a colimit cocone.
Equations
- category_theory.coyoneda.colimit_cocone_is_colimit X = {desc := λ (s : category_theory.limits.cocone (category_theory.coyoneda.obj X)) (x : (category_theory.coyoneda.colimit_cocone X).X), s.ι.app (opposite.unop X) (𝟙 (opposite.unop X)), fac' := _, uniq' := _}
The colimit of coyoneda.obj X is isomorphic to punit.
The yoneda embedding yoneda.obj X : Cᵒᵖ ⥤ Type v for X : C preserves limits.
Equations
- category_theory.yoneda_preserves_limits X = {preserves_limits_of_shape := λ (J : Type v) (𝒥 : category_theory.category J), {preserves_limit := λ (K : J ⥤ Cᵒᵖ), {preserves := λ (c : category_theory.limits.cone K) (t : category_theory.limits.is_limit c), {lift := λ (s : category_theory.limits.cone (K ⋙ category_theory.yoneda.obj X)) (x : s.X), (t.lift {X := opposite.op X, π := {app := λ (j : J), quiver.hom.op (s.π.app j x), naturality' := _}}).unop, fac' := _, uniq' := _}}}}
The coyoneda embedding coyoneda.obj X : C ⥤ Type v for X : Cᵒᵖ preserves limits.
Equations
- category_theory.coyoneda_preserves_limits X = {preserves_limits_of_shape := λ (J : Type v) (𝒥 : category_theory.category J), {preserves_limit := λ (K : J ⥤ C), {preserves := λ (c : category_theory.limits.cone K) (t : category_theory.limits.is_limit c), {lift := λ (s : category_theory.limits.cone (K ⋙ category_theory.coyoneda.obj X)) (x : s.X), t.lift {X := opposite.unop X, π := {app := λ (j : J), s.π.app j x, naturality' := _}}, fac' := _, uniq' := _}}}}
The yoneda embeddings jointly reflect limits.
Equations
- category_theory.yoneda_jointly_reflects_limits J K c t = let s' : Π (s : category_theory.limits.cone K), category_theory.limits.cone (K ⋙ category_theory.yoneda.obj (opposite.unop s.X)) := λ (s : category_theory.limits.cone K), {X := punit, π := {app := λ (j : J) (_x : ((category_theory.functor.const J).obj punit).obj j), (s.π.app j).unop, naturality' := _}} in {lift := λ (s : category_theory.limits.cone K), quiver.hom.op ((t (opposite.unop s.X)).lift (s' s) punit.star), fac' := _, uniq' := _}
The coyoneda embeddings jointly reflect limits.
Equations
- category_theory.coyoneda_jointly_reflects_limits J K c t = let s' : Π (s : category_theory.limits.cone K), category_theory.limits.cone (K ⋙ category_theory.coyoneda.obj (opposite.op s.X)) := λ (s : category_theory.limits.cone K), {X := punit, π := {app := λ (j : J) (_x : ((category_theory.functor.const J).obj punit).obj j), s.π.app j, naturality' := _}} in {lift := λ (s : category_theory.limits.cone K), (t (opposite.op s.X)).lift (s' s) punit.star, fac' := _, uniq' := _}