Lemmas about images of intervals under order isomorphisms. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Order isomorphism between Iic (⊤ : α) and α when α has a top element
Equations
- order_iso.Iic_top = {to_equiv := {to_fun := (equiv.subtype_univ_equiv order_iso.Iic_top._proof_1).to_fun, inv_fun := (equiv.subtype_univ_equiv order_iso.Iic_top._proof_1).inv_fun, left_inv := _, right_inv := _}, map_rel_iff' := _}
 
Order isomorphism between Ici (⊥ : α) and α when α has a bottom element
Equations
- order_iso.Ici_bot = {to_equiv := {to_fun := (equiv.subtype_univ_equiv order_iso.Ici_bot._proof_1).to_fun, inv_fun := (equiv.subtype_univ_equiv order_iso.Ici_bot._proof_1).inv_fun, left_inv := _, right_inv := _}, map_rel_iff' := _}