Field/algebra norm and localization #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains results on the combination of algebra.norm and is_localization.
Main results #
algebra.norm_localization: letSbe an extension ofRandRₘ Sₘbe localizations atMofR Srespectively. Then the norm ofa : SₘoverRₘis the norm ofa : SoverRifSis free asR-module
Tags #
field norm, algebra norm, localization
theorem
algebra.norm_localization
(R : Type u_1)
{S : Type u_2}
[comm_ring R]
[comm_ring S]
[algebra R S]
{Rₘ : Type u_3}
{Sₘ : Type u_4}
[comm_ring Rₘ]
[algebra R Rₘ]
[comm_ring Sₘ]
[algebra S Sₘ]
(M : submonoid R)
[is_localization M Rₘ]
[is_localization (algebra.algebra_map_submonoid S M) Sₘ]
[algebra Rₘ Sₘ]
[algebra R Sₘ]
[is_scalar_tower R Rₘ Sₘ]
[is_scalar_tower R S Sₘ]
[module.free R S]
[module.finite R S]
(a : S) :
⇑(algebra.norm Rₘ) (⇑(algebra_map S Sₘ) a) = ⇑(algebra_map R Rₘ) (⇑(algebra.norm R) a)
Let S be an extension of R and Rₘ Sₘ be localizations at M of R S respectively.
Then the norm of a : Sₘ over Rₘ is the norm of a : S over R if S is free as R-module.